skip to main content
10.1145/2740908.2741750acmotherconferencesArticle/Chapter ViewAbstractPublication PagesthewebconfConference Proceedingsconference-collections
research-article

A Hybrid Approach to Perform Efficient and Effective Query Execution Against Public SPARQL Endpoints

Published: 18 May 2015 Publication History

Abstract

Linked Open Data initiatives have fostered the publication of Linked Data sets, as well as the deployment of publicly available SPARQL endpoints as client-server querying infrastructures to access these data sets. However, recent studies reveal that SPARQL endpoints may exhibit significant limitations in supporting real-world applications, and public linked data sets can suffer of quality issues, e.g., data can be incomplete or incorrect. We tackle these problems and propose a novel hybrid architecture that relies on shipping policies to improve the performance of SPARQL endpoints, and exploits human and machine query processing computation to enhance the quality of Linked Data sets. We report on initial empirical results that suggest that the proposed techniques overcome current drawbacks, and may provide a novel solution to make these promising infrastructures available for real-world applications.

References

[1]
M. Acosta, E. Simperl, F. Flöck, and M. Vidal. RDF-Hunter: Automatically crowdsourcing the execution of queries against RDF data sets. Under review.
[2]
M. Acosta, M. Vidal, F. Flöck, S. Castillo, C. B. Aranda, and A. Harth. SHEPHERD: A shipping-based query processor to enhance SPARQL endpoint performance. In Proc. International Semantic Web Conference, ISWC, Posters & Demonstrations Track, pages 453--456, 2014.
[3]
M. Acosta, A. Zaveri, E. Simperl, D. Kontokostas, S. Auer, and J. Lehmann. Crowdsourcing linked data quality assessment. In Proc. International Semantic Web Conference, ISWC, pages 260--276, 2013.
[4]
Y. Amsterdamer, S. B. Davidson, T. Milo, S. Novgorodov, and A. Somech. OASSIS: query driven crowd mining. In Proc. International Conference on Management of Data, SIGMOD, pages 589--600, 2014.
[5]
C. B. Aranda, A. Hogan, J. Umbrich, and P.-Y. Vandenbussche. SPARQL web-querying infrastructure: Ready for action? In Proc. International Semantic Web Conference, ISWC, pages 277--293, 2013.
[6]
M. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and R. Xin. CrowdDB: answering queries with crowdsourcing. In Proc. International Conference on Management of Data, SIGMOD, pages 61--72, 2011.
[7]
M. J. Franklin, B. T. Jónsson, and D. Kossmann. Performance tradeoffs for client-server query processing. In Proc. International Conference on Management of Data, SIGMOD, pages 149--160, 1996.
[8]
D. Kontokostas, P. Westphal, S. Auer, S. Hellmann, J. Lehmann, R. Cornelissen, and A. Zaveri. Test-driven evaluation of linked data quality. In Proc. International Conference on World Wide Web, WWW, pages 747--758, 2014.
[9]
A. Marcus, D. R. Karger, S. Madden, R. Miller, and S. Oh. Counting with the crowd. PVLDB, 6(2):109--120, 2012.
[10]
H. Park, R. Pang, A. G. Parameswaran, H. Garcia-Molina, N. Polyzotis, and J. Widom. Deco: A system for declarative crowdsourcing. PVLDB, 5(12):1990--1993, 2012.
[11]
H. Park and J. Widom. Query optimization over crowdsourced data. PVLDB, 6(10):781--792, 2013.
[12]
H. Paulheim and C. Bizer. Improving the quality of linked data using statistical distributions. International Journal on Semantic Web and Information Systems (IJSWIS), 10(2):63--86, 2014.
[13]
M. Salvadores, M. Horridge, P. R. Alexander, R. W. Fergerson, M. A. Musen, and N. F. Noy. Using SPARQL to query bioportal ontologies and metadata. In Proc. International Semantic Web Conference, ISWC, pages 180--195, 2012.
[14]
B. Trushkowsky, T. Kraska, M. J. Franklin, and P. Sarkar. Crowdsourced enumeration queries. In Proc. International Conference on Data Engineering, ICDE, pages 673--684, 2013.
[15]
R. Verborgh, O. Hartig, B. D. Meester, G. Haesendonck, L. D. Vocht, M. V. Sande, R. Cyganiak, P. Colpaert, E. Mannens, and R. V. de Walle. Querying datasets on the web with high availability. In Proc. International Semantic Web Conference, ISWC, pages 180--196, 2014.
[16]
A. Zaveri, D. Kontokostas, M. A. Sherif, L. Bühmann, M. Morsey, S. Auer, and J. Lehmann. User-driven quality evaluation of dbpedia. In Proc. International Conference on Semantic Systems, I-SEMANTICS, pages 97--104, 2013.
[17]
A. Zaveri, A. Rula, A. Maurino, R. Pietrobon, J. Lehmann, and S. Auer. Quality assessment for linked data: A survey. Semantic Web Journal, 2015. (To appear).

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
WWW '15 Companion: Proceedings of the 24th International Conference on World Wide Web
May 2015
1602 pages
ISBN:9781450334730
DOI:10.1145/2740908

Sponsors

  • IW3C2: International World Wide Web Conference Committee

In-Cooperation

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 18 May 2015

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. RDF
  2. crowdsourcing
  3. hybrid system
  4. microtasks
  5. quality issues
  6. query optimization
  7. sparql endpoint
  8. sparql query

Qualifiers

  • Research-article

Conference

WWW '15
Sponsor:
  • IW3C2

Acceptance Rates

Overall Acceptance Rate 1,899 of 8,196 submissions, 23%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 109
    Total Downloads
  • Downloads (Last 12 months)4
  • Downloads (Last 6 weeks)1
Reflects downloads up to 05 Mar 2025

Other Metrics

Citations

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media