skip to main content
10.1145/2740908.2742825acmotherconferencesArticle/Chapter ViewAbstractPublication PagesthewebconfConference Proceedingsconference-collections
research-article

Kvasir: Seamless Integration of Latent Semantic Analysis-Based Content Provision into Web Browsing

Published: 18 May 2015 Publication History

Abstract

The Internet is overloading its users with excessive information flows, so that effective content-based filtering becomes crucial in improving user experience and work efficiency. We build Kvasir, a semantic recommendation system, atop latent semantic analysis and other state-of-art technologies to seamlessly integrate an automated and proactive content provision service into web browsing. We utilize the power of Apache Spark to scale up Kvasir to a practical Internet service. Herein we present the architecture of Kvasir, along with our solutions to the technical challenges in the actual system implementation.

References

[1]
Kvasir project, http://cs.helsinki.fi/u/lxwang/kvasir.
[2]
T. Berners-Lee, et al. The semantic web. In Scientific american, 284(5):28--37, 2001.
[3]
M. Brand. Fast low-rank modifications of the thin singular value decomposition. In Linear Algebra and its Applications, 415(1):20 -- 30, 2006.
[4]
J. S. Breese, et al. Empirical analysis of predictive algorithms for collaborative filtering. In UAI'98, 1998.
[5]
P. Cremonesi, et al. Cross-domain recommender systems. In IEEE ICDMW, 496--503, 2011.
[6]
W. B. Frakes, et al. Information Retrieval: Data Structures and Algorithms. Prentice-Hall, 1992.
[7]
D. Goldberg, et al. Using collaborative filtering to weave an information tapestry. ACM Commun., 1992.
[8]
N. Halko, et al. Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions. In SIAM Rev., 2011.
[9]
D. Huynh, et al. Piggy bank: Experience the semantic web inside your web browser. In ISWC 2005, 2005.
[10]
J. M. Kleinberg. Authoritative sources in a hyperlinked environment. J. ACM, 604--632, 1999.
[11]
Y. Koren and R. Bell. Advances in collaborative filtering. In Recommender Systems Handbook, 2011.
[12]
B. Li, et al. Can movies and books collaborate?: Cross-domain collaborative filtering for sparsity reduction. In IJCAI'09, 2009
[13]
C. D. Manning, et al. Introduction to Information Retrieval. Cambridge University Press, 2008.
[14]
L. Page, et al. The pagerank citation ranking: Bringing order to the web. Tech-report, 1999.

Cited By

View all
  • (2016)Kvasir: Scalable Provision of Semantically Relevant Web Content on Big Data FrameworkIEEE Transactions on Big Data10.1109/TBDATA.2016.25573482:3(219-233)Online publication date: 1-Sep-2016

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
WWW '15 Companion: Proceedings of the 24th International Conference on World Wide Web
May 2015
1602 pages
ISBN:9781450334730
DOI:10.1145/2740908

Sponsors

  • IW3C2: International World Wide Web Conference Committee

In-Cooperation

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 18 May 2015

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. big data
  2. content-based filter
  3. information retrieval
  4. latent semantic analysis
  5. random projection
  6. web browsing

Qualifiers

  • Research-article

Conference

WWW '15
Sponsor:
  • IW3C2

Acceptance Rates

Overall Acceptance Rate 1,899 of 8,196 submissions, 23%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)3
  • Downloads (Last 6 weeks)2
Reflects downloads up to 01 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2016)Kvasir: Scalable Provision of Semantically Relevant Web Content on Big Data FrameworkIEEE Transactions on Big Data10.1109/TBDATA.2016.25573482:3(219-233)Online publication date: 1-Sep-2016

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media