
Initial Encryption of large Searchable Data Sets
using Hadoop

Feng Wang
SAP SE

Karlsruhe, Germany
feng.wang02@sap.com

Mathias Kohler
SAP SE

Karlsruhe, Germany
mathias.kohler@sap.com

Andreas Schaad
SAP SE

Karlsruhe, Germany
andreas.schaad@sap.com

ABSTRACT
With the introduction and the widely use of external hosted
infrastructures, secure storage of sensitive data becomes more and
more important. There are systems available to store and query
encrypted data in a database, but not all applications may start with
empty tables rather than having sets of legacy data. Hence, there is a
need to transform existing plaintext databases to encrypted form.
Usually existing enterprise databases may contain terabytes of data.
A single machine would require many months for the initial
encryption of a large data set. We propose encrypting data in
parallel using a Hadoop cluster which is a simple five step process
including the Hadoop set up, target preparation, source data import,
encrypting the data, and finally exporting it to the target. We
evaluated our solution on real world data and report on performance
and data consumption. The results show that encrypting data in
parallel can be done in a very scalable manner. Using a parallelized
encryption cluster compared to a single server machine reduces the
encryption time from months down to days or even hours.

Categories and Subject Descriptors
H.2.0 [Database Management]: General – security; H.3.4
[Information Storage and Retrieval]: Systems and Software –
Distributed systems, Performance evaluation.

General Terms
Performance, Security

Keywords
Database; Searchable Encryption; Hadoop; Performance

1. INTRODUCTION
Storing data externally with a hosted provider becomes more and
more attractive to companies which want to save costs on their
own physical infrastructure. Since the cloud service providers
have access to all data, clearly, storing sensitive data externally
asks for solutions providing respective privacy precautions such
that only the data owner is able to access the data.

Inspired by CryptDB [1], we developed a system to encrypt and
store data on a database, all happening transparently to the

application. Hence, it can be used in the same way traditional
databases are accessed to execute a large set of queries over the
encrypted data. Introducing such an encrypted database solution
to an existing application landscape requires an initialization
phase where all unencrypted data is transferred and encrypted into
the new database.

Since most of the encryption operations are slow, encrypting a
plaintext table is very time-consuming, especially when the table
is large. Using tables enabled for adjustable encryption [13]
having multiple encryption layers for one database entry adds
significantly to the computation time for the initial encryption. We
show how to make the initial table encryption an automated
process and much more efficient using a Hadoop cluster for
parallelized data processing.

The rest of the report is structured as follows. Section 2 describes
the technical details. In Section 3, we discuss the performance test
and its result, and conclude with Section 4.

2. IMPLEMENTATION
In this section, we will discuss the technical details of how to
encrypt the database in parallel.

2.1 Search over Encrypted Data
Inspired by CryptDB [1], we implemented a JDBC driver for
connecting to database containing encrypted data. The goal of the
driver is to realize accessing encrypted data transparently to the
client application, which means a large set of regular SQL queries
can be used to search over encrypted data.

SQL operations (equality search, range search, aggregations, etc.)
require that data is stored with different encryption schemes.
When encrypting a database, each plaintext data item is encrypted
using multiple schemes, depending on the SQL operations to be
executed on the data. In total there are five types of encryption
schemes we use:

· Random (RND): RND has the highest security level.
Two same plaintexts result in different ciphertexts. This
scheme is used for secure data storage and retrieval
only, no other SQL operation is supported on these
ciphertexts. We use AES in CBC mode (with Padding).

· Deterministic (DET): For DET holds (ݔ)ܶܧܦ =
if ,(ݕ)ܶܧܦ ݔ = ݕ . Hence, equality operations on the
ciphertext is supported. AES in ECB mode (with
padding) is used.

· Order-preserving encryption (OPE): For OPE, if ݔ < ,ݕ
then (ݔ)ܧܱܲ < holds. It supports SQL range (ݕ)ܧܱܲ
queries on the ciphertext. We use the algorithm
introduced by Boldyreva et al. [2].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
SACMAT '15, June 1–3, 2015, Vienna, Austria
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3556-0/15/06…$15.00
http://dx.doi.org/10.1145/2752952.2752960

· Additive homomorphic encryption (HOM): We use the
Paillier algorithm [3] for aggregating encrypted values
as it holds: (ݔ)ܯܱܪ ∙ (ݕ)ܯܱܪ = ݔ)ܯܱܪ + .(ݕ

· Re-encryption (JOIN): For maximum security, all
columns are encrypted with different keys. Joining two
columns, however, requires them to be deterministically
encrypted with the same key. With the encryption
scheme introduced by Pohlig and Hellman [4] we
support on demand re-encryption of a column to be on
the same key as another column for join operations (see
[13] for more details).

For the support of an initial maximum security and storage
optimization, we use adjustable encryption [13]. This means a
plaintext item x is encrypted in a layered approach with multiple
encryption schemes such that, for instance, RND(DET(OPE(x)))
holds. If during an SQL execution an in-between-layer is required,
top layers are removed on demand to reveal the respective layer.

Obviously, even if stacked, we want the encryption schemes to
keep their characteristics we listed above. Hence, schemes on a
lower layer must have the same characteristics required for the
layer stacked on top of it (e.g., OPE must be deterministic, if DET
is stacked on top). We use four stack structures to support
multiple SQL operations in one query (e.g., aggregation and a
range condition). Moreover, we provide two stack structures for
integers and one stack structure for strings. Table 1 gives an
overview.

In Table 1, the row "Types" stands for the type of plaintext data
the characteristics of the encryption schemes are actually
applicable. For example, for integer or decimal values, the
additive homomorphic encryption scheme is required, to actually
enable aggregations; it is, however, not required for strings. For
sorting items (with OPE) different paddings are used for integer
and string values; moreover, in our use cases joins are only done
with integer values such that we omit this layer for strings. Stack
structure 1 is used for data retrieval to the client and group by
selections only. Having AES-based encryption schemes in this
stack is a very fast solution for decrypting result sets on the client.

Table 1 Encryption Structure
Stack 1 Stack 2 Stack 3 Stack 4

Layer 1 DET OPE OPE HOM
Layer 2 RND RND JOIN
Layer 3 RND
Types Integer,

String,
Date,
Decimal

String Integer,
Date,
Decimal

Integer,
Decimal

Usage Retrieval,
Group By

Range
queries
with
strings

Joins,
Equality,
Range
queries w/
numbers

Aggrega-
tion

2.2 Encryption
We use the implemented JDBC driver and a Hadoop cluster to
encrypt the plaintext table. There are five steps in total for the
complete process. The basic workflow is shown in Figure 2.

2.2.1 Set up
Firstly the cluster to encrypt the data needs to be set up. We use
Apache Hadoop [5], Apache Sqoop [6], and Apache Oozie [7].
These tools are installed in the cluster.

Table 2 Plaintext Tables
Table Name Number of

Columns
Number of
Entries

Size on Disk
(KB)

BKPF 111 9,737,795 1,059,148
ORDERS 10 1,280,000 98,308
KNA1 175 14,554 3,076
KNB1 77 10,269 620
T001 79 269 448
T003 38 132 212
T005T 8 2,531 132
T016T 4 40 56
TBSLT 5 1,049 72

Table 3 Experiment Result
Table
Name

Import
data to
cluster

Encryption Export data to
database
Method 1 Method 2

BKPF 1h42m 27h41m About 24h About
5d4h

ORDERS 1m40s 2h1m 23m 1h40m
KNA1 40s 19m 2m 10m
KNB1 1m 4m 50s 3m
T001 30s 2m 30s 40s
T003 30s 2m 30s 30s
T005T 30s 4m 30s 2m
T016T 30s 1m 30s 1m
TBSLT 30s 1m 30s 1m

Table 4 Encrypted Tables
Table Name Number

of
Columns

Number
of
Entries

Size on
Disk
(KB)

Size vs.
Plain-
text

ENC_BKPF 227 9,737,795 ~153,135k 144x
ENC_ORDERS 26 1,280,000 3,011,868 30x
ENC_KNA1 353 14,554 289,992 94x
ENC_KNB1 160 10,269 116,944 188x
ENC_T001 159 269 1,800 4x
ENC_T003 77 132 444 2x
ENC_T005T 17 2,531 4,324 33x
ENC_T016T 9 40 268 5x
ENC_TBSLT 11 1,049 516 7x

Figure 2. Workflow

2.2.2 Create target table
We use the above mentioned stack structures to prepare and create
the target table. Given the source table, for each of its plaintext
columns, one or more encrypted columns will exist in in the
encrypted table; each of these columns corresponds to exactly one
stack. There will always be an encrypted column corresponding to
Stack 1 for retrieving data. Which other stacks are created in
addition is either selected automatically according to the source
column’s data type or is manually selected by the user. For
instance, a plaintext integer column would have three encrypted
columns in the target table, storing the encrypted data according
to stack 1, 3, and 4. If it is an identifier column, the user might
manually omit the column with HOM encryption (stack 4) as
identifiers are usually not aggregated.

2.2.3 Import data to cluster
The third step is to import the plaintext data from the database to
the cluster’s file system called HDFS. To achieve this goal, we
use Apache Sqoop. Sqoop is a tool for transferring data between
Apache Hadoop and the relational database. The relational
database can be from any database vendor. In our case, SAP
HANA [9] is used. The imported data is stored in a CSV file type-
like structure, which means each line in the file represents an
entry of the table.

The performance of this step mainly depends on the database
itself and the network between database and cluster. The data
imported to the HDFS will be the input for next step.

2.2.4 Encryption
The forth step is to do the encryption on the cluster. It is a map-
reduce process. As we have mentioned above, the imported data is
in CSV file type, which means each line in the file represents an
entry of the plaintext table. So in the map stage, the imported file
is read line by line, and each line is encrypted using the
encryption algorithms mentioned above. This step does not need
the reduce stage. The output of this step is also CSV file(s) which
is according to the encrypted table structure previously created.

The performance of this step mainly depends on the performance
of the cluster.

2.2.5 Export data to database
The last step is to export the data from the cluster to the database.
We implemented this step by two different methods.

The first method is to use Sqoop which is similar to Section 2.2.2.
Sqoop export uses the INSERT SQL statement, which means it
will use a statement like INSERT INTO <TABLE> VALUES
(<ROW>) to export data from the Hadoop cluster to the target
table. Since this method needs to iterate through all data line by
line, it is quite slow. For some relational databases a batch mode
is supported. Each time multiple lines can be inserted by using
INSERT INTO <TABLE> VALUES (<ROW1>), (<ROW2>), etc.,
and obviously this will make the exporting faster. As a result, the
performance of the first method highly depends on if the database
supports the batch mode INSERT. Moreover, it also depends on
the condition of the network. And for some large tables, this
exporting process requires the cluster connecting to the database
for a long time, which may result in the connection being closed
during the process.

The second method we implemented deals with exporting the data
in a naïve way. This method requires the cluster having the
Hadoop NameNode Web Interface installed. After the previous
step (map-reduce encryption) is finished, the database server can

directly download the output file(s) from the NameNode Web
Interface. Then it obviously depends on the database which
commands to be used to import the data into the database. In our
case, using SAP HANA, the IMPORT FROM FILE [10]
command is used.

The performance of the second method depends on the network
and the database IMPORT performance.

2.2.6 Workflow management
The previous steps (Section 2.2.2 to Section 2.2.5) are all
scheduled and managed by Apache Oozie. Oozie is a workflow
scheduler tool to manage the Hadoop jobs. The reason to use
Oozie is that it can make the implementation "cleaner", easier to
modify, and more reliable.

3. EVALUATION
In this section, we will discuss our experiments with the above
described setup and its performance.

3.1 Environment setup
SAP HANA is used as database. Typically for this database, all
data is stored in memory in tables using column-based storage.

The Hadoop cluster resides on an internal virtual hosting
environment. There is one master, twelve slaves, and one Ambari
server [8]. The master machine has 8 CPUs, and 31.6 GB
memory. The slave machines have each 8 CPUs, and 16 GB
memory. All have between 100 and 300 GB available space.

3.2 Plaintext Tables
We have chosen 9 plaintext tables in total to test the performance.
All the tables are standard SAP ERP tables and mainly come from
the application of sFIN [11]. The details are shown in Table 3.

3.3 Time
The tables listed in Table 3 are encrypted one by one. There is
only one job running in parallel, and before a new job is started,
the cluster is cleaned. For all columns we create encrypted
columns (stacks) according to the type of the plaintext column
given with Table 1. We report on both methods to export the data
to database (see Section 2.2.4). The results are showed in Table 4.

From Table 4, it is clear that the direct export using INSERT
statements is much faster if it comes to large tables rather than
using method 2 with CSV files. Method 2 takes about 5 times as
much for processing then method 1. A reason we see is that in
method 2 all encrypted data has to be extracted and copied from
Hadoop’s file system to the database server where it then has to be
processed a second time for importing it with the IMPORT
command.

3.4 Encrypted Tables
After the encryption, there are 9 encrypted tables corresponding to
the plaintext tables. Their information is shown in Table 5.

3.5 Scalability test
We test the scalability of our solution with a midsized table
ORDERS. We report on the scalability of the encryption with
respect to the size of the table as well as with the size of the
Hadoop cluster, i.e., number of working nodes.

3.5.1 Different table size
Firstly we use a fixed number of nodes (1 master server, 12 slave
nodes) in cluster and change the table's size by randomly selecting
a predefined number of entries from table ORDERS. And for
exporting, we use method 1. The results are shown in Table 5.

Table 5 Scalability test for different table size
Number of
entries

Time (m)
Import Encryption Export Total

1,280,000 1.6 121 23 145.6
1,120,000 1.3 98.3 32 131.6
960,000 1.5 87.3 22 110.8
800,000 2.1 73.25 10.6 85.95
640,000 1.5 59.3 10.5 71.3
480,000 1 43 7 51
320,000 0.8 33 4.5 38.3
160,000 0.5 16 2.5 19
10,000 0.5 5.3 0.6 6.4

A more intuitive result is showed in Figure 3. From it, it is clear
that with the linear increasing table size, the computation time
also increases linearly.

Figure 3: Computation time for different table sizes

3.5.2 Different number of nodes in cluster
We also test the influence of the number of nodes in cluster on the
computation time. Because in the cluster only slave nodes store
the data and do the computation, we increased the number of slave
nodes from one node to 12 nodes in total. The complete table
ORDERS is used for each encryption, remaining stable in its size.
For exporting, again method 1 is used. The results are shown in
Table 6.

Table 6 Scalability test for different number of nodes
Number
of slave
nodes

Time (m)
Import Encryption Export Total

12 1.6 121 23 145.6
9 4 150 34 188
6 1.6 213.9 33 248.5
3 1.5 432.25 21.3 455.05
1 1.5 1498.5 25 1525

A more intuitive result is showed in Figure 4. From it, we can see
the number of slave nodes affects the computation time and
correlates directly with the number of nodes used. The time
roughly drops to a third by using 3 nodes instead of only one. And
it drops roughly to 1/12 when using 12 nodes.

4. CONCLUSION
In this report, we mainly talk about how to encrypt tables in
parallel. After the environment setup, the idea is to divide the

process in three main steps: import data to cluster, encryption, and
export data to database. For step "import data to cluster", Apache
Sqoop is used. For step "encryption", Map-Reduce is used. In step
"export data to database", there are two potential methods. The
first one uses Sqoop too, and the second one is a naïve method
where the data is copied to the database with a database-specific
import command.
We have run tests using real world tables. The results show that
an automated encryption solution is feasible and using a Hadoop
cluster reduces encryption time drastically in a very scalable
manner.

5. REFERENCES
[1] Popa, R. A., Redfield, C., Zeldovich, N., & Balakrishnan, H.

2011. Cryptdb: protecting confidentiality with encrypted
query processing. In Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles.

[2] Boldyreva, A., Chenette, N., Lee, Y., & O’neill, A. 2009.
Order-preserving symmetric encryption. In Advances in
Cryptology – EUROCRYPT.

[3] Paillier, P. 1999. Public-key cryptosystems based on
composite degree residuosity classes. In Advances in
cryptology – EUROCRYPT.

[4] Pohlig, S. C., Hellman, M. E. 1978. An improved algorithm
for computing logarithms over and its cryptographic
significance (corresp.). In Transactions on Information Theory.

[5] Apache Hadoop. http://hadoop.apache.org/.
[6] Apache Sqoop. http://sqoop.apache.org/.
[7] Apache Oozie. http://oozie.apache.org/.
[8] Apache Ambari. http://ambari.apache.org/.
[9] SAP HANA. http://hana.sap.com/abouthana.html.
[10] SAP HANA ‘IMPORT FROM’.

http://help.sap.com/saphelp_hanaplatform/helpdata/en/20/f71
2e175191014907393741fadcb97/content.htm.

[11] SAP Simple Finance aka sFIN.
http://scn.sap.com/docs/DOC-59882.

[12] Kerschbaum et al. 2013. Optimal Re-Emcryption Strategy
for Joins in Encrypted Databases. In Working Conference on
Data and Applications Security and Privacy (DBSec).

[13] Florian Kerschbaum et al. 2013. Adjustably encrypted in-
memory column-store. In ACM Conference on Computer and
Communications Security.

Figure 4: Computation time for different node numbers

