skip to main content
10.1145/2755996.2756647acmconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article

Randomized Root Finding over Finite FFT-fields using Tangent Graeffe Transforms

Published:24 June 2015Publication History

ABSTRACT

Consider a finite field Fq whose multiplicative group has smooth cardinality. We study the problem of computing all roots of a polynomial that splits over Fq, which was one of the bottlenecks for fast sparse interpolation in practice. We revisit and slightly improve existing algorithms and then present new randomized ones based on the Graeffe transform. We report on our implementation in the MATHEMAGIX computer algebra system, confirming that our ideas gain by a factor ten at least in practice, for sufficiently large inputs.

References

  1. E. Bach. Comments on search procedures for primitive roots. Math. Comp., 66:1719--1727, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. R. Berlekamp. Factoring polynomials over finite fields. Bell System Tech. J., 46:1853--1859, 1967.Google ScholarGoogle ScholarCross RefCross Ref
  3. R. Berlekamp. Factoring polynomials over large finite fields. Math. Comp., 24:713--735, 1970.Google ScholarGoogle ScholarCross RefCross Ref
  4. D. Bini and V. Y. Pan. Polynomial and matrix computations. Vol. 1. Fundamental algorithms. Progress in Theoretical Computer Science. Birkhuseär, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. I. Bluestein. A linear filtering approach to the computation of discrete Fourier transform. IEEE Transactions on Audio and Electroacoustics, 18(4):451--455, 1970.Google ScholarGoogle ScholarCross RefCross Ref
  6. A. Bostan and É. Schost. Polynomial evaluation and interpolation on special sets of points. J. Complexity, 21(4):420--446, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. G. Cantor and E. Kaltofen. On fast multiplication of polynomials over arbitrary algebras. Acta Infor., 28(7):693--701, 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. G. Cantor and H. Zassenhaus. A new algorithm for factoring polynomials over finite fields. Math. Comp., 36(154):587--592, 1981.Google ScholarGoogle ScholarCross RefCross Ref
  9. PH. Flajolet and J.-M. Steyaert. A branching process arising in dynamic hashing, trie searching and polynomial factorization. In M. Nielsen and E. M. Schmidt, editors, Automata, Languages and Programming. Proceedings of the 9th ICALP Symposium, volume 140 of Lecture Notes in Comput. Sci., pages 239--251. Springer Berlin Heidelberg, 1982. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. J. von zur Gathen. Factoring polynomials and primitive elements for special primes. Theoret. Comput. Sci., 52(1--2):77--89, 1987. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. J. von zur Gathen and J. Gerhard. Modern computer algebra. Cambridge University Press, 2nd edition, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. GCC, the GNU Compiler Collection. Software available at http://gcc.gnu.org, from 1987.Google ScholarGoogle Scholar
  13. T. Granlund et al. GMP, the GNU multiple precision arithmetic library, from 1991. Software available at http://gmplib.org.Google ScholarGoogle Scholar
  14. B. Grenet, J. van der Hoeven, and G. Lecerf. Deterministic root finding over finite fields using Graeffe transforms. http://hal.archives-ouvertes.fr/hal-01081743, 2015.Google ScholarGoogle Scholar
  15. W. Hart, F. Johansson, and S. Pancratz. FLINT: Fast Library for Number Theory, 2014. Version 2.4.4, http://flintlib.org.Google ScholarGoogle Scholar
  16. D. Harvey, J. van der Hoeven, and G. Lecerf. Even faster integer multiplication. http://arxiv.org/abs/1407.3360, 2014.Google ScholarGoogle Scholar
  17. D. Harvey, J. van der Hoeven, and G. Lecerf. Faster polynomial multiplication over finite fields. http://arxiv.org/abs/1407.3361, 2014.Google ScholarGoogle Scholar
  18. J. van der Hoeven et al. Mathemagix, from 2002. http://www.mathemagix.org.Google ScholarGoogle Scholar
  19. J. van der Hoeven and G. Lecerf. Sparse polynomial interpolation in practice. ACM Commun. Comput. Algebra, 48(4), 2014. In section "ISSAC 2014 Software Presentations". Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. E. Kaltofen. Fifteen years after DSC and WLSS2, what parallel computations I do today. Invited lecture at PASCO 2010. In Proceedings of the 4th International Workshop on Parallel and Symbolic Computation, PASCO '10, pages 10--17. ACM Press, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. E. Kaltofen and V. Shoup. Subquadratic-time factoring of polynomials over finite fields. Math. Comp., 67(223):1179--1197, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. K. S. Kedlaya and C. Umans. Fast modular composition in any characteristic. In A. Z. Broder et al., editors, 49th Annual IEEE Symposium on Foundations of Computer Science 2008 (FOCS '08), pages 146--155. IEEE, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. L. Kronecker. Grundzüge einer arithmetischen Theorie der algebraischen Grössen. J. reine angew. Math., 92:1--122, 1882.Google ScholarGoogle Scholar
  24. G. Malajovich and J. P. Zubelli. Tangent Graeffe iteration. Numer. Math., 89(4):749--782, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  25. M. Mignotte and C. Schnorr. Calcul déterministe des racines d';un polynôme dans un corps fini. C. R. Acad. Sci. Paris Sér. I Math., 306(12):467--472, 1988.Google ScholarGoogle Scholar
  26. T. Moenck. On the efficiency of algorithms for polynomial factoring. Math. Comp., 31:235--250, 1977.Google ScholarGoogle ScholarCross RefCross Ref
  27. G. L. Mullen and D. Panario. Handbook of Finite Fields. Discrete Mathematics and Its Applications. Chapman and Hall/CRC, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. V. Pan. Solving a polynomial equation: Some history and recent progress. SIAM Rev., 39(2):187--220, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.Google ScholarGoogle Scholar
  30. M. O. Rabin. Probabilistic algorithms in finite fields. SIAM J. Comput., 9(2):273--280, 1980.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. L. Rónyai. Factoring polynomials modulo special primes. Combinatorica, 9(2):199--206, 1989.Google ScholarGoogle ScholarCross RefCross Ref
  32. V. Shoup. A fast deterministic algorithm for factoring polynomials over finite fields of small characteristic. In S. M. Watt, editor, ISSAC '91: Proceedings of the 1991 International Symposium on Symbolic and Algebraic Computation, pages 14--21. ACM Press, 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. V. Shoup. Searching for primitive roots in finite fields. Math. Comp., 58: 369--380, 1992.Google ScholarGoogle ScholarCross RefCross Ref
  34. V. Shoup. NTL: A Library for doing Number Theory, 2014. Software, version 8.0.0. http://www.shoup.net/ntl.Google ScholarGoogle Scholar

Index Terms

  1. Randomized Root Finding over Finite FFT-fields using Tangent Graeffe Transforms

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        ISSAC '15: Proceedings of the 2015 ACM on International Symposium on Symbolic and Algebraic Computation
        June 2015
        374 pages
        ISBN:9781450334358
        DOI:10.1145/2755996

        Copyright © 2015 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 24 June 2015

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        ISSAC '15 Paper Acceptance Rate43of71submissions,61%Overall Acceptance Rate395of838submissions,47%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader