skip to main content
research-article

Study, design, and evaluation of exploration strategies for autonomous mobile robots

Published:16 June 2015Publication History
First page image

References

  1. Amigoni, F., Basilico, N., and Quattrini Li, A. (2012). How much worth is coordination of mobile robots for exploration in search and rescue? In Proceedings of RoboCup (pp. 106--117).Google ScholarGoogle Scholar
  2. Amigoni, F., Basilico, N., and Quattrini Li, A. (2014). Moving from 'how to go there?' to 'where to go?': Towards increased autonomy of mobile robots. In A. Rodic, D. Pisla, & H. Bleuler (Eds.), New trends in medical and service robots (pp. 345--356). Springer.Google ScholarGoogle Scholar
  3. Amigoni, F., Luperto, M., and Quattrini Li, A. (2014). Towards more realistic indoor environments for the virtual robot competition. In RoboCup2014 team description papers.Google ScholarGoogle Scholar
  4. Amigoni, F., Quattrini Li, A., and Holz, D. (2013). Evaluating the impact of perception and decision timing on autonomous robotic exploration. In Proceedings of ECMR (pp. 68--73).Google ScholarGoogle ScholarCross RefCross Ref
  5. Amigoni, F., Reggiani, M., and Schiaffonati, V. (2009). An insightful comparison between experiments in mobile robotics and in science. Autonomous Robots, 27(4), 313--325. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Amigoni, F., and Schiaffonati, V. (2014). Autonomous mobile robots as technical artifacts: A discussion of experimental issues. In L. Magnani (Ed.), Model-based reasoning in science and technology (p. 527--542). Springer.Google ScholarGoogle Scholar
  7. Aydemir, A., Pronobis, A., Göbelbecker, M., and Jensfelt, P. (2013). Active visual object search in unknown environments using uncertain semantics. IEEE Transactions on Robotics, 29(4), 986--1002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Basilico, N., and Amigoni, F. (2011). Exploration strategies based on multi-criteria decision making for searching environments in rescue operations. Autonomous Robots, 31(4), 401--417. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Brass, P., Cabrera-Mora, F., Gasparri, A., and Xiao, J. (2011). Multirobot tree and graph exploration. IEEE Transactions on Robotics, 27(4), 707--717. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Calisi, D., Iocchi, L., Nardi, D., Randelli, G., and Ziparo, V. (2009). Improving search and rescue using contextual information. Advanced Robotics, 23, 1199--1216.Google ScholarGoogle ScholarCross RefCross Ref
  11. Carpin, S., Burch, D., Basilico, N., Chung, T., and Kölsch, M. (2013). Variable resolution search with quadrotors: Theory and practice. Journal of Field Robotics, 30(5), 685--701.Google ScholarGoogle ScholarCross RefCross Ref
  12. Carpin, S., Lewis, M., Wang, J., Balakirsky, S., and Scrapper, C. (2007). USARSim: A robot simulator for research and education. In Proceedings of ICRA (p. 1400--1405).Google ScholarGoogle ScholarCross RefCross Ref
  13. Cipolleschi, R., Giusto, M., Quattrini Li, A., and Amigoni, F. (2013). Semantically-informed coordinated multirobot exploration of relevant areas in search and rescue settings. In Proceedings of ECMR (pp. 216--221).Google ScholarGoogle ScholarCross RefCross Ref
  14. Deng, X., Kameda, T., & Papadimitriou, C. H. (1998). How to learn an unknown environment I: The rectilinear case. Journal of the ACM, 45(2), 215--245. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Duncan, C., Kobourov, S., & Kumar, A. (2006). Optimal constrained graph exploration. ACM Transactions on Algorithms, 2(3), 380--402. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Fekete, S., & Schmidt, C. (2010). Polygon exploration with time-discrete vision. Computational Geometry: Theory and Applications, 43(2), 148--168. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Gonzáles-Baños, H., and Latombe, J.-C. (2002). Navigation strategies for exploring indoor environments. International Journal of Robotics Research, 21(10--11), 829--848.Google ScholarGoogle Scholar
  18. Julia, M., Gil, A., and Reinoso, Ó. (2012). A comparison of path planning strategies for autonomous exploration and mapping of unknown environments. Autonomous Robots, 33(4), 427--444.Google ScholarGoogle ScholarCross RefCross Ref
  19. Marjovi, A., and Marques, L. (2013). Multi-robot topological exploration using olfactory cues. In Proceedings of DARS (p. 47--60).Google ScholarGoogle ScholarCross RefCross Ref
  20. Mozos, O., Stachniss, C., and Burgard, W. (2005). Supervised learning of places from range data using AdaBoost. In Proceedings of ICRA (p. 1742--1747).Google ScholarGoogle ScholarCross RefCross Ref
  21. Nieto-Granda, C., Rogers, J., and Christensen, H. (2014). Co- ordination strategies for multi-robot exploration and mapping. International Journal of Robotics Research, 33(4), 519--533. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. O'Brien, M., Arkin, R., Harrington, D., Lyons, D., and Jiang, S. (2014). Automatic verification of autonomous robot missions. In Proceedings of SIMPAR (p. 462--473). Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Parker, L., Coogle, R., and Howard, A. (2013). Estimation-informed, resource-aware robot navigation for environmental monitoring applications. In Proceedings of ICRA (p. 1041--1046).Google ScholarGoogle ScholarCross RefCross Ref
  24. Pezzementi, Z., Plaku, E., Reyda, C., and Hager, G. (2011). Tactile-object recognition from appearance information. IEEE Transactions on Robotics, 27(3), 473--487. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Quattrini Li, A., Basilico, N., and Amigoni, F. (2012). Search- ing for optimal off-line exploration paths in grid environments. In Proceedings of AAAI (pp. 2060--2066).Google ScholarGoogle Scholar
  26. Quattrini Li, A., Cipolleschi, R., Giusto, M., and Amigoni, F. (2014). Semantically-informed coordinated multirobot exploration of relevant areas in search and rescue settings. Autonomous Robots (submitted, under review)Google ScholarGoogle Scholar
  27. Rekleitis, I., Lee-Shue, V., New, A. P., and Choset, H. (2004). Limited communication, multi-robot team based coverage. In Proceedings of ICRA (Vol. 4, p. 3462--3468).Google ScholarGoogle ScholarCross RefCross Ref
  28. Riva, A., Quattrini Li, A., and Amigoni, F. (2015). Some performance bounds of strategies for graph exploration. In Proceedings of AAMAS (accepted). Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Siegwart, R., Nourbakhsh, I., and Scaramuzza, D. (2011). Introduction to autonomous mobile robots. MIT Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Smith, R., Schwager, M., Smith, S., Rus, D., and Sukhatme, G. (2011). Persistent ocean monitoring with under- water gliders: Towards accurate reconstruction of dynamic ocean processes. In Proceedings of ICRA (p. 1517--1524).Google ScholarGoogle Scholar
  31. Stachniss, C., Mozos, O. M., & Burgard, W. (2008). Efficient exploration of unknown indoor environments using a team of mobile robots. Annals of Mathematics and Artificial Intelligence, 52(2-4), 205--227. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Tadokoro, S. (2010). Rescue robotics. Springer.Google ScholarGoogle Scholar
  33. Thakur, D., Likhachev, M., Keller, J., Kumar, V., Dobrokhodov, V., Jones, K., Wurz, J, and Kaminer, I. (2013). Planning for opportunistic surveillance with multiple robots. In Proceedings of IROS (p. 5750--5757).Google ScholarGoogle ScholarCross RefCross Ref
  34. Thrun, S. (2002). Robotic mapping: A survey. In Exploring artificial intelligence in the new millennium (p. 1--35). Morgan Kaufmann. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Tovar, B., Munoz, L., Murrieta-Cid, R., Alencastre, M., Monroy, R., and Hutchinson, S. (2006). Planning exploration strategies for simultaneous localization and mapping. Journal on Robotics and Autonomous Systems, 54(4), 314--331.Google ScholarGoogle ScholarCross RefCross Ref
  36. Tovey, C., & Koenig, S. (2003). Improved analysis of greedy mapping. In Proceedings of IROS (p. 3251--3257).Google ScholarGoogle ScholarCross RefCross Ref
  37. Yamauchi, B. (1998). Frontier-based exploration using multiple robots. Proceedings of Agents (p. 47--53). Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Zhang, Q., Whitney, D., Shkurti, F., & Rekleitis, I. (2014). Ear-based exploration on hybrid metric/topological maps. In Proceedings of IROS (p. 3081--3088).Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Study, design, and evaluation of exploration strategies for autonomous mobile robots

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image AI Matters
            AI Matters  Volume 1, Issue 4
            June 2015
            38 pages
            EISSN:2372-3483
            DOI:10.1145/2757001
            Issue’s Table of Contents

            Copyright © 2015 Author

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 16 June 2015

            Check for updates

            Qualifiers

            • research-article

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader