skip to main content
research-article

Ensemble stream model for data-cleaning in sensor networks

Published: 16 June 2015 Publication History
First page of PDF

References

[1]
Bodik, P., Hong, W., Guestrin, C., Madden, S., Paskin M., Thibaux, R. (2004). Intel Lab Data dataset. Retrieved from http://db.csail.mit.edu/labdata/labdata.html
[2]
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5--32.
[3]
Brooks, R. R., & Iyengar, S. S. (1996). Robust distributed computing and sensing algorithm. Computer, 29(6), 53--60.
[4]
Garimella, M. R., & Iyer, V. (2007). Distributed wireless sensor network architecture: Fuzzy logic based sensor fusion. Proceedings of the 5th Conference of the European Society for Fuzzy Logic and Technology, vol 2, pp. 71--78.
[5]
Iyer, V. (2013). Ensemble stream model for data-cleaning in sensor networks. Ph.D. Dissertation, Florida International University.
[6]
Iyer, V., Iyengar, S. S., Balakrishnan, N., Phoha, V., & Murthy, G. R. (2009). Distributed source coding for sensor data model and estimation of cluster head errors using bayesian and k-near neighborhood classifiers in deployment of dense wireless sensor networks. Proceedings of the Third International Conference on Sensor Technologies and Applications, pp. 19--24.
[7]
Iyer, V., Iyengar, S. S., Murthy, G. R., Parameswaran, N., Phoha, V., & Srinivas, M. B. (2010). Cognitive Model Selections in Co-existing Operation of Wireless Sensor Networks. Proceedings of the Second International Conference on Computational Intelligence, Modelling and Simulation, pp. 494--499.
[8]
Iyer, V., Iyengar, S. S., Pissinou, N., & Ren, S. (2013). SPOTLESS: Similarity patterns of trajectories in label-less sensor streams. Proceedings of the IEEE Conference on Pervasive Computing and Communications Workshops, pp. 487--492.
[9]
Iyer, V., Murthy, R., Srinivas, M., & Hochet, B. (2008). C-error simulator for development for sensor and location aware sensing applications. Proceedings of the Third International Conference on Sensing Technology, pp. 192--199.
[10]
Lichman, M. (2013). UCI Machine Learning Repository, available at http://archive.ics.uci.edu/ml. Irvine, CA: University of California, School of Information and Computer Science.
[11]
Prasad, L., Iyengar, S. S., Kashyap, R., & Madan, R. N. (1991). Functional characterization of fault tolerant integration in distributed sensor networks. IEEE Transactions on Systems, Man and Cybernetics, 21(5), 1082--1087.
[12]
Vens, C., & Costa, F. (2011). Random forest based feature induction. Proceedings of the IEEE 11th International Conference on Data Mining, pp. 744--753.
[13]
Zheng, Y., & Fu, H. (2011). Geolife GPS trajectory dataset - User Guide. Retrieved from http://research.microsoft.com/apps/pubs/default.aspx?id=152176

Cited By

View all
  • (2022)Spatial Blockchain: Smart Contract Using Multiple Camera CensusesProceedings of the Future Technologies Conference (FTC) 2022, Volume 210.1007/978-3-031-18458-1_4(55-66)Online publication date: 13-Oct-2022

Recommendations

Comments

Information & Contributors

Information

Published In

cover image AI Matters
AI Matters  Volume 1, Issue 4
June 2015
38 pages
EISSN:2372-3483
DOI:10.1145/2757001
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 16 June 2015
Published in SIGAI-AIMATTERS Volume 1, Issue 4

Check for updates

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)9
  • Downloads (Last 6 weeks)0
Reflects downloads up to 13 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2022)Spatial Blockchain: Smart Contract Using Multiple Camera CensusesProceedings of the Future Technologies Conference (FTC) 2022, Volume 210.1007/978-3-031-18458-1_4(55-66)Online publication date: 13-Oct-2022

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media