skip to main content
10.1145/2766462.2767697acmconferencesArticle/Chapter ViewAbstractPublication PagesirConference Proceedingsconference-collections
research-article

adaQAC: Adaptive Query Auto-Completion via Implicit Negative Feedback

Published:09 August 2015Publication History

ABSTRACT

Query auto-completion (QAC) facilitates user query composition by suggesting queries given query prefix inputs. In 2014, global users of Yahoo! Search saved more than 50% keystrokes when submitting English queries by selecting suggestions of QAC. Users' preference of queries can be inferred during user-QAC interactions, such as dwelling on suggestion lists for a long time without selecting query suggestions ranked at the top. However, the wealth of such implicit negative feedback has not been exploited for designing QAC models. Most existing QAC models rank suggested queries for given prefixes based on certain relevance scores.

We take the initiative towards studying implicit negative feed- back during user-QAC interactions. This motivates re-designing QAC in the more general "(static) relevance"(adaptive) implicit negative feedback? framework. We propose a novel adaptive model adaQAC that adapts query auto-completion to users' implicit negative feedback towards unselected query suggestions. We collect user-QAC interaction data and perform large-scale experiments. Empirical results show that implicit negative feedback significantly and consistently boosts the accuracy of the investigated static QAC models that only rely on relevance scores. Our work compellingly makes a key point: QAC should be designed in a more general framework for adapting to implicit negative feedback.

References

  1. E. Adar, D. S. Weld, B. N. Bershad, and S. S. Gribble. Why we search: visualizing and predicting user behavior. In WWW, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Z. Bar-Yossef and N. Kraus. Context-sensitive query auto-completion. In WWW, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. C. M. Bishop. Pattern recognition and machine learning, volume 1. 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. S. Boyd and L. Vandenberghe. Convex optimization. 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. F. Cai, S. Liang, and M. de Rijke. Time-sensitive personalized query auto-completion. In CIKM, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. S. Chaudhuri and R. Kaushik. Extending autocompletion to tolerate errors. In SIGMOD, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algorithms, volume 2. 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. H. Duan and B.-J. P. Hsu. Online spelling correction for query completion. In WWW, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. D. Guan, S. Zhang, and H. Yang. Utilizing query change for session search. In SIGIR, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learning, volume 2. 2009.Google ScholarGoogle ScholarCross RefCross Ref
  11. K. Hofmann, B. Mitra, F. Radlinski, and M. Shokouhi. An eye-tracking study of user interactions with query auto completion. In CIKM, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Y. Hong, Q. Cai, S. Hua, J. Yao, and Q. Zhu. Negative feedback: the forsaken nature available for re-ranking. In COLING, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. B.-J. P. Hsu and G. Ottaviano. Space-efficient data structures for top-k completion. In WWW, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. S. Ji, G. Li, C. Li, and J. Feng. Efficient interactive fuzzy keyword search. In WWW, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. J.-Y. Jiang, Y.-Y. Ke, P.-Y. Chien, and P.-J. Cheng. Learning user reformulation behavior for query auto-completion. In SIGIR, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. S. R. Kairam, M. R. Morris, J. Teevan, D. J. Liebling, and S. T. Dumais. Towards supporting search over trending events with social media. In ICWSM, 2013.Google ScholarGoogle Scholar
  17. M. Karimzadehgan and C. Zhai. Improving retrieval accuracy of difficult queries through generalizing negative document language models. In CIKM, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. E. Kharitonov, C. Macdonald, P. Serdyukov, and I. Ounis. User model-based metrics for offline query suggestion evaluation. In SIGIR, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems. Computer, 42(8), 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. A. Kulkarni, J. Teevan, K. M. Svore, and S. T. Dumais. Understanding temporal query dynamics. In WSDM, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Y. Li, A. Dong, H. Wang, H. Deng, Y. Chang, and C. Zhai. A two-dimensional click model for query auto-completion. In SIGIR, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Y. Li, X. Tao, A. Algarni, and S.-T. Wu. Mining specific and general features in both positive and negative relevance feedback. In TREC, 2009.Google ScholarGoogle Scholar
  23. J. Luo, S. Zhang, and H. Yang. Win-win search: Dual-agent stochastic game in session search. In SIGIR, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Y. Ma and H. Lin. A multiple relevance feedback strategy with positive and negative models. PloS ONE, 9(8), 2014.Google ScholarGoogle Scholar
  25. C. D. Manning, P. Raghavan, and H. Schütze. Introduction to information retrieval, volume 1. 2008. Google ScholarGoogle ScholarCross RefCross Ref
  26. B. Mitra, M. Shokouhi, F. Radlinski, and K. Hofmann. On user interactions with query auto-completion. In SIGIR, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. T. Miyanishi and T. Sakai. Time-aware structured query suggestion. In SIGIR, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. K. P. Murphy. Machine learning: a probabilistic perspective. 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. A. Nedić. Optimization. Technical Report, UIUC, 2011.Google ScholarGoogle Scholar
  30. J. J. Rocchio. Relevance feedback in information retrieval. The SMART Retrieval System Experiments in Automatic Document Processing, 1971. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. M. Shokouhi. Learning to personalize query auto-completion. In SIGIR, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. M. Shokouhi and K. Radinsky. Time-sensitive query auto-completion. In SIGIR, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. X. Wang, H. Fang, and C. Zhai. Improve retrieval accuracy for difficult queries using negative feedback. In CIKM, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. X. Wang, H. Fang, and C. Zhai. A study of methods for negative relevance feedback. In SIGIR, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. S. Whiting and J. M. Jose. Recent and robust query auto-completion. In WWW, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. C. Xiao, J. Qin, W. Wang, Y. Ishikawa, K. Tsuda, and K. Sadakane. Efficient error-tolerant query autocompletion. VLDB, 6(6), 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. H. Yang, M. Sloan, and J. Wang. Dynamic information retrieval modeling. In SIGIR, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. S.-H. Yang, B. Long, A. J. Smola, H. Zha, and Z. Zheng. Collaborative competitive filtering: learning recommender using context of user choice. In SIGIR, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. W. Zhang and J. Wang. The study of methods for language model based positive and negative relevance feedback in information retrieval. In ISISE, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. adaQAC: Adaptive Query Auto-Completion via Implicit Negative Feedback

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      SIGIR '15: Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval
      August 2015
      1198 pages
      ISBN:9781450336215
      DOI:10.1145/2766462

      Copyright © 2015 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 9 August 2015

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      SIGIR '15 Paper Acceptance Rate70of351submissions,20%Overall Acceptance Rate792of3,983submissions,20%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader