skip to main content
research-article
Open access

High-resolution brittle fracture simulation with boundary elements

Published: 27 July 2015 Publication History

Abstract

We present a method for simulating brittle fracture under the assumptions of quasi-static linear elastic fracture mechanics (LEFM). Using the boundary element method (BEM) and Lagrangian crack-fronts, we produce highly detailed fracture surfaces. The computational cost of the BEM is alleviated by using a low-resolution mesh and interpolating the resulting stress intensity factors when propagating the high-resolution crack-front.
Our system produces physics-based fracture surfaces with high spatial and temporal resolution, taking spatial variation of material toughness and/or strength into account. It also allows for crack initiation to be handled separately from crack propagation, which is not only more reasonable from a physics perspective, but can also be used to control the simulation.
Separating the resolution of the crack-front from the resolution of the computational mesh increases the efficiency and therefore the amount of visual detail on the resulting fracture surfaces. The BEM also allows us to re-use previously computed blocks of the system matrix.

Supplementary Material

ZIP File (a151-hahn.zip)
Supplemental files
MP4 File (a151.mp4)

References

[1]
Abdelaziz, Y., and Hamouine, A. 2008. A survey of the extended finite element. Computers & Structures 86, 1141--1151.
[2]
Aliabadi, M. 1997. Boundary element formulations in fracture mechanics. Applied Mechanics Reviews 50, 2, 83--96.
[3]
Anderson, T. L. 2005. Fracture mechanics: fundamentals and applications. CRC press.
[4]
Bao, Z., Hong, J.-M., Teran, J., and Fedkiw, R. 2007. Fracturing rigid materials. TVCG 13, 370--378.
[5]
Becker, W., and Lampman, S. 2002. Fracture appearance and mechanisms of deformation and fracture. Materials Park, OH: ASM International 2002, 559--586.
[6]
Chen, Z., Yao, M., Feng, R., and Wang, H. 2014. Physics-inspired adaptive fracture refinement. ACM Trans. Graph. 33, 113:1--113:7.
[7]
DREAM3D, 2014. A Digital Representation Environment for the Analysis of Microstructure in 3D. v. 4.2.4. http://dream3d.bluequartz.net.
[8]
Frangi, A., Novati, G., Springhetti, R., and Rovizzi, M. 2002. 3D fracture analysis by the symmetric Galerkin BEM. Computational Mechanics 28, 3-4, 220--232.
[9]
Freund, L. B. 1998. Dynamic Fracture Mechanics. Cambridge Monographs on Mechanics. Cambridge University Press.
[10]
Garland, M., and Heckbert, P. S. 1997. Surface simplification using quadric error metrics. In SIGGRAPH 97, Annual Conference Series, 209--216.
[11]
Glondu, L., Muguercia, L., Marchal, M., Bosch, C., Rushmeier, H., Dumont, G., and Drettakis, G. 2012. Example-based fractured appearance. Computer Graphics Forum 31, 4, 1547--1556.
[12]
Glondu, L., Marchal, M., and Dumont, G. 2013. Real-time simulation of brittle fracture using modal analysis. TVCG 19, 201--209.
[13]
Gravouil, A., Moës, N., and Belytschko, T. 2002. Non-planar 3D crack growth by the extended finite element and level sets -- part II: level set update. INT J NUMER METH ENG 53, 11, 2569--2586.
[14]
Gross, D., and Seelig, T. 2011. Fracture Mechanics, 2nd ed. Springer.
[15]
Hirota, K., Tanoue, Y., and Kaneko, T. 1998. Generation of crack patterns with a physical model. The Visual Computer 14, 126--137.
[16]
Hirota, K., Tanoue, Y., and Kaneko, T. 2000. Simulation of three-dimensional cracks. The Visual Computer 16, 371--378.
[17]
HyENA, 2013. Hyperbolic and Elliptic Numerical Analysis. Graz University of Technology. http://www.mech.tugraz.at/HyENA v. 2013-Nov-04.
[18]
Iben, H. N., and O'Brien, J. F. 2006. Generating surface crack patterns. In ACM SIGGRAPH/Eurographics SCA 2006, 177--185.
[19]
Ingraffea, A. R., and Wawrzynek, P. A. 2003. Finite Element Methods for Linear Elastic Fracture Mechanics, Chapter 3.1 in Comprehensive Structural Integrity. Elsevier Science Ltd.
[20]
Irving, G., Teran, J., and Fedkiw, R. 2004. Invertible finite elements for robust simulation of large deformation. In ACM SIGGRAPH/Eurographics SCA 2004, 131--140.
[21]
James, D. L., and Pai, D. K. 1999. Artdefo: Accurate real time deformable objects. In SIGGRAPH 99, Annual Conference Series, 65--72.
[22]
Kaufmann, P., Martin, S., Botsch, M., Grinspun, E., and Gross, M. 2009. Enrichment textures for detailed cutting of shells. ACM Trans. Graph. 28, 50:1--50:10.
[23]
Keeler, T., and Bridson, R. 2014. Ocean waves animation using boundary integral equations and explicit mesh tracking. In ACM SIGGRAPH/Eurographics SCA 2014, 11--19.
[24]
Kielhorn, L. 2009. A time-domain symmetric Galerkin BEM for viscoelastodynamics. Verl. der Techn. Univ. Graz.
[25]
Koschier, D., Lipponer, S., and Bender, J. 2014. Adaptive tetrahedral meshes for brittle fracture simulation. In ACM SIGGRAPH/Eurographics SCA 2014.
[26]
Levine, J. A., Bargteil, A. W., Corsi, C., Tessendorf, J., and Geist, R. 2014. A peridynamic perspective on spring-mass fracture. In ACM SIGGRAPH/Eurographics SCA 2014.
[27]
Messner, M., and Schanz, M. 2010. An accelerated symmetric time-domain boundary element formulation for elasticity. Engineering Analysis with Boundary Elements 34, 11, 944--955.
[28]
Möes, N., Gravouil, A., and Belytschko, T. 2002. Non-planar 3D crack growth by the extended finite element and level sets -- part I: mechanical model. INT J NUMER METH ENG 53, 11, 2549--2568.
[29]
Molino, N., Bao, Z., and Fedkiw, R. 2004. A virtual node algorithm for changing mesh topology during simulation. ACM Trans. Graph. 23, 385--392.
[30]
Mousavi, S. E., Grinspun, E., and Sukumar, N. 2011. Higher-order extended finite elements with harmonic enrichment functions for complex crack problems. INT J NUMER METH ENG 86, 4--5, 560--574.
[31]
Müller, M., McMillan, L., Dorsey, J., and Jagnow, R. 2001. Real-time simulation of deformation and fracture of stiff materials. In Proceedings of the Eurographic Workshop on Computer Animation and Simulation, Springer-Verlag New York, Inc., New York, NY, USA, 113--124.
[32]
Müller, M., Chentanez, N., and Kim, T.-Y. 2013. Real time dynamic fracture with volumetric approximate convex decompositions. ACM Trans. Graph. 32, 115:1--115:10.
[33]
Nesme, M., Kry, P. G., Jeřábková, L., and Faure, F. 2009. Preserving topology and elasticity for embedded deformable models. ACM Trans. Graph. 28, 52:1--52:9.
[34]
Norton, A., Turk, G., Bacon, B., Gerth, J., and Sweeney, P. 1991. Animation of fracture by physical modeling. The Visual Computer 7, 210--219.
[35]
O'Brien, J. F., and Hodgins, J. K. 1999. Graphical modeling and animation of brittle fracture. In SIGGRAPH 99, Annual Conference Series, 137--146.
[36]
O'Brien, J. F., Bargteil, A. W., and Hodgins, J. K. 2002. Graphical modeling and animation of ductile fracture. ACM Trans. Graph. 21, 291--294.
[37]
OpenVDB, 2014. DreamWorks Animation. v. 2.2.0. http://www.openvdb.org.
[38]
ParaView, 2014. Kitware Inc. v. 4.1.0. http://www.paraview.org.
[39]
Patricio, M., and Mattheij, R. 2007. Crack propagation analysis. CASA-report 0723.
[40]
Pauly, M., Keiser, R., Adams, B., Dutré, P., Gross, M., and Guibas, L. J. 2005. Meshless animation of fracturing solids. ACM Trans. Graph. 24, 957--964.
[41]
Pfaff, T., Narain, R., de Joya, J. M., and O'Brien, J. F. 2014. Adaptive tearing and cracking of thin sheets. ACM Trans. Graph. 33, 110:1--110:9.
[42]
Portela, A., Aliabadi, M. H., and Rooke, D. P. 1992. The dual boundary element method: effective implementation for crack problems. INT J NUMER METH ENG 33, 6, 1269--1287.
[43]
Rabczuk, T. 2013. Computational methods for fracture in brittle and quasi-brittle solids: State-of-the-art review and future perspectives. ISRN Applied Mathematics 2013, Article ID 849231.
[44]
Sauter, S. A., and Schwab, C. 2011. Boundary Element Methods. Springer Berlin Heidelberg.
[45]
Schvartzman, S. C., and Otaduy, M. A. 2014. Fracture animation based on high-dimensional voronoi diagrams. In ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, 15--22.
[46]
Smith, J., Witkin, A., and Baraff, D. 2001. Fast and controllable simulation of the shattering of brittle objects. Computer Graphics Forum 20, 81--91.
[47]
Stomakhin, A., Schroeder, C., Chai, L., Teran, J., and Selle, A. 2013. A material point method for snow simulation. ACM Trans. Graph. 32, 102:1--102:10.
[48]
Stomakhin, A., Schroeder, C., Jiang, C., Chai, L., Teran, J., and Selle, A. 2014. Augmented mpm for phase-change and varied materials. ACM Trans. Graph. 33, 138:1--138:11.
[49]
Su, J., Schroeder, C., and Fedkiw, R. 2009. Energy stability and fracture for frame rate rigid body simulations. In ACM SIGGRAPH/Eurographics SCA 2009, 155--164.
[50]
Sumner, R. W., and Popović, J. 2004. Deformation transfer for triangle meshes. ACM Trans. Graph. 23, 399--405.
[51]
Sutradhar, A., Paulino, G. H., and Gray, L. J. 2008. Symmetric Galerkin boundary element method. Springer.
[52]
Terzopoulos, D., and Fleischer, K. 1988. Modeling inelastic deformation: Viscolelasticity, plasticity, fracture. SIGGRAPH Comput. Graph. 22, 269--278.
[53]
VCGlib, 2014. The VCG Library, Visual Computing Lab, CNR-ISTI. http://vcg.isti.cnr.it/~cignoni/newvcglib/html.
[54]
Wicke, M., Ritchie, D., Klingner, B. M., Burke, S., Shewchuk, J. R., and O'Brien, J. F. 2010. Dynamic local remeshing for elastoplastic simulation. ACM Trans. Graph. 29, 49:1--49:11.
[55]
Wilde, A. J., and Aliabadi, M. H. 1999. A 3-d dual BEM formulation for the analysis of crack growth. Computational Mechanics 23, 3, 250--257.
[56]
Wojtan, C., and Turk, G. 2008. Fast viscoelastic behavior with thin features. ACM Trans. Graph. 27, 47:1--47:8.
[57]
Zheng, C., and James, D. L. 2010. Rigid-body fracture sound with precomputed soundbanks. ACM Trans. Graph. 29, 69:1--69:13.

Cited By

View all

Index Terms

  1. High-resolution brittle fracture simulation with boundary elements

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 34, Issue 4
      August 2015
      1307 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2809654
      Issue’s Table of Contents
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 27 July 2015
      Published in TOG Volume 34, Issue 4

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. boundary elements
      2. brittle fracture
      3. crack propagation

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)151
      • Downloads (Last 6 weeks)21
      Reflects downloads up to 18 Jan 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2025)Implicit Bonded Discrete Element Method with Manifold OptimizationACM Transactions on Graphics10.1145/3711852Online publication date: 9-Jan-2025
      • (2024)An Induce-on-Boundary Magnetostatic Solver for Grid-Based FerrofluidsACM Transactions on Graphics10.1145/365812443:4(1-14)Online publication date: 19-Jul-2024
      • (2024)Rod-Bonded Discrete Element MethodGraphical Models10.1016/j.gmod.2024.101218133(101218)Online publication date: Jun-2024
      • (2023)In-Timestep Remeshing for Contacting ElastodynamicsACM Transactions on Graphics10.1145/359242842:4(1-15)Online publication date: 26-Jul-2023
      • (2023)A Practical Walk-on-Boundary Method for Boundary Value ProblemsACM Transactions on Graphics10.1145/359210942:4(1-16)Online publication date: 26-Jul-2023
      • (2023)Breaking Good: Fracture Modes for Realtime DestructionACM Transactions on Graphics10.1145/354954042:1(1-12)Online publication date: 9-Mar-2023
      • (2023)Surface‐Only Dynamic Deformables using a Boundary Element MethodComputer Graphics Forum10.1111/cgf.1462541:8(75-86)Online publication date: 20-Mar-2023
      • (2023)Phase-field simulation of fractographic features formation in soda–lime glass beams fractured in bendingTheoretical and Applied Fracture Mechanics10.1016/j.tafmec.2023.103997127(103997)Online publication date: Oct-2023
      • (2022)Simulating Fracture in Anisotropic Materials Containing ImpuritiesProceedings of the 15th ACM SIGGRAPH Conference on Motion, Interaction and Games10.1145/3561975.3562956(1-10)Online publication date: 3-Nov-2022
      • (2022)On Optimizing Transaction Fees in Bitcoin using AI: Investigation on Miners Inclusion PatternACM Transactions on Internet Technology10.1145/352866922:3(1-28)Online publication date: 25-Jul-2022
      • Show More Cited By

      View Options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Login options

      Full Access

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media