skip to main content
research-article

Computational bodybuilding: anatomically-based modeling of human bodies

Published: 27 July 2015 Publication History

Abstract

We propose a method to create a wide range of human body shapes from a single input 3D anatomy template. Our approach is inspired by biological processes responsible for human body growth. In particular, we simulate growth of skeletal muscles and subcutaneous fat using physics-based models which combine growth and elasticity. Together with a tool to edit proportions of the bones, our method allows us to achieve a desired shape of the human body by directly controlling hypertrophy (or atrophy) of every muscle and enlargement of fat tissues. We achieve near-interactive run times by utilizing a special quasi-statics solver (Projective Dynamics) and by crafting a volumetric discretization which results in accurate deformations without an excessive number of degrees of freedom. Our system is intuitive to use and the resulting human body models are ready for simulation using existing physics-based animation methods, because we deform not only the surface, but also the entire volumetric model.

Supplementary Material

ZIP File (a41-saito.zip)
Supplemental files
MP4 File (a41.mp4)

References

[1]
Agur, A. M., Ng-Thow-Hing, V., Ball, K. A., Fiume, E., and McKee, N. H. 2003. Documentation and three-dimensional modelling of human soleus muscle architecture. Clinical Anatomy 16, 4, 285--293.
[2]
Ali-Hamadi, D., Liu, T., Gilles, B., Kavan, L., Faure, F., Palombi, O., and Cani, M.-P. 2013. Anatomy transfer. ACM Trans. Graph. 32, 6, 188.
[3]
Allen, B., Curless, B., and Popović, Z. 2003. The space of human body shapes: reconstruction and parameterization from range scans. ACM Trans. Graph. 22, 3, 587--594.
[4]
Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., and Davis, J. 2005. Scape: shape completion and animation of people. ACM Trans. Graph. 24, 3, 408--416.
[5]
Bargteil, A. W., Wojtan, C., Hodgins, J. K., and Turk, G. 2007. A finite element method for animating large viscoplastic flow. ACM Trans. Graph. 26, 3, 16.
[6]
Ben Amar, M., and Goriely, A. 2005. Growth and instability in elastic tissues. Journal of the Mechanics and Physics of Solids 53, 10, 2284--2319.
[7]
Botsch, M., Pauly, M., Wicke, M., and Gross, M. 2007. Adaptive space deformations based on rigid cells. Comput. Graph. Forum 26, 3, 339--347.
[8]
Bouaziz, S., Martin, S., Liu, T., Kavan, L., and Pauly, M. 2014. Projective dynamics: fusing constraint projections for fast simulation. ACM Trans. Graph. 33, 4, 154.
[9]
Boyd, S., and Vandenberghe, L. 2009. Convex optimization. Cambridge university press.
[10]
Chao, I., Pinkall, U., Sanan, P., and Schröder, P. 2010. A simple geometric model for elastic deformations. ACM Trans. Graph. 29, 4, 38.
[11]
Chen, Y., Liu, Z., and Zhang, Z. 2013. Tensor-based human body modeling. In Proc. CVPR, 105--112.
[12]
Chen, X., Zheng, C., Xu, W., and Zhou, K. 2014. An asymptotic numerical method for inverse elastic shape design. ACM Trans. Graph. 33, 4, 95.
[13]
Choi, H. F., and Blemker, S. S. 2013. Skeletal muscle fascicle arrangements can be reconstructed using a laplacian vector field simulation. PloS one 8, 10, e77576.
[14]
D'Antona, G., Lanfranconi, F., Pellegrino, M. A., Brocca, L., Adami, R., Rossi, R., Moro, G., Miotti, D., Canepari, M., and Bottinelli, R. 2006. Skeletal muscle hypertrophy and structure and function of skeletal muscle fibres in male body builders. The Journal of physiology 570, 3, 611--627.
[15]
Fan, Y., Litven, J., and Pai, D. K. 2014. Active volumetric musculoskeletal systems. ACM Trans. Graph. 33, 4, 152.
[16]
Fung, Y.-c. 1990. Biomechanics: motion, flow, stress, and growth, vol. 990. Springer-Verlag New York.
[17]
Geijtenbeek, T., van de Panne, M., and van der Stappen, A. F. 2013. Flexible muscle-based locomotion for bipedal creatures. ACM Trans. Graph. 32, 6, 206.
[18]
Hasler, N., Stoll, C., Sunkel, M., Rosenhahn, B., and Seidel, H.-P. 2009. A statistical model of human pose and body shape. Comput. Graph. Forum 28, 2, 337--346.
[19]
Jacobson, A., and Sorkine, O. 2011. Stretchable and twistable bones for skeletal shape deformation. ACM Trans. Graph. 30, 6, 165.
[20]
Jacobson, A., Baran, I., Popovic, J., and Sorkine, O. 2011. Bounded biharmonic weights for real-time deformation. ACM Trans. Graph. 30, 4, 78.
[21]
Jain, A., Thormählen, T., Seidel, H.-P., and Theobalt, C. 2010. Moviereshape: Tracking and reshaping of humans in videos. ACM Trans. Graph. 29, 6, 148.
[22]
Jones, G. W., and Chapman, S. J. 2012. Modeling growth in biological materials. SIAM Review 54, 1, 52--118.
[23]
Joshi, P., Meyer, M., DeRose, T., Green, B., and Sanocki, T. 2007. Harmonic coordinates for character articulation. ACM Trans. Graph. 26, 3, 71.
[24]
Kavan, L., and Zara, J. 2005. Spherical blend skinning: A real-time deformation of articulated models. In ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, 9--16.
[25]
Kraevoy, V., Sheffer, A., Shamir, A., and Cohen-Or, D. 2008. Non-homogeneous resizing of complex models. ACM Trans. Graph. 27, 5, 111.
[26]
Lee, S.-H., Sifakis, E., and Terzopoulos, D. 2009. Comprehensive biomechanical modeling and simulation of the upper body. ACM Trans. Graph. 28, 4, 99.
[27]
Lee, D., Glueck, M., Khan, A., Fiume, E., and Jackson, K. 2010. A survey of modeling and simulation of skeletal muscle. ACM Trans. Graph. 28, 4.
[28]
Lee, Y., Park, M. S., Kwon, T., and Lee, J. 2014. Locomotion control for many-muscle humanoids. ACM Trans. Graph. 33, 6, 218.
[29]
Levin, D. I., Gilles, B., Mädler, B., and Pai, D. K. 2011. Extracting skeletal muscle fiber fields from noisy diffusion tensor data. Medical Image Analysis 15, 3, 340--353.
[30]
Loper, M., Mahmood, N., and Black, M. J. 2014. Mosh: motion and shape capture from sparse markers. ACM Trans. Graph. 33, 6, 220.
[31]
Martin, S., Thomaszewski, B., Grinspun, E., and Gross, M. 2011. Example-based elastic materials. ACM Trans. Graph. 30, 4, 72.
[32]
McAdams, A., Zhu, Y., Selle, A., Empey, M., Tamstorf, R., Teran, J., and Sifakis, E. 2011. Efficient elasticity for character skinning with contact and collisions. ACM Trans. Graph. 30, 4, 37.
[33]
Neumann, T., Varanasi, K., Hasler, N., Wacker, M., Magnor, M., and Theobalt, C. 2013. Capture and statistical modeling of arm-muscle deformations. Comput. Graph. Forum 32, 2pt3, 285--294.
[34]
Neumann, T., Varanasi, K., Wenger, S., Wacker, M., Magnor, M., and Theobalt, C. 2013. Sparse localized deformation components. ACM Trans. Graph. 32, 6, 179.
[35]
Pai, D. K., Levin, D. I. W., and Fan, Y. 2014. Eulerian solids for soft tissue and more. In ACM SIGGRAPH 2014 Courses, 22:1--22:151.
[36]
Patterson, T., Mitchell, N., and Sifakis, E. 2012. Simulation of complex nonlinear elastic bodies using lattice deformers. ACM Trans. Graph. 31, 6, 197.
[37]
Popa, T., Julius, D., and Sheffer, A. 2006. Material-aware mesh deformations. In Proc. of Shape Modeling International, 22--22.
[38]
Reinert, B., Ritschel, T., and Seidel, H.-P. 2012. Homunculus warping: Conveying importance using self-intersection-free non-homogeneous mesh deformation. Comput. Graph. Forum 31, 7, 2165--2171.
[39]
Rodriguez, E. K., Hoger, A., and McCulloch, A. D. 1994. Stress-dependent finite growth in soft elastic tissues. Journal of biomechanics 27, 4, 455--467.
[40]
Scheepers, F., Parent, R. E., Carlson, W. E., and May, S. F. 1997. Anatomy-based modeling of the human musculature. In Proc. SIGGRAPH, 163--172.
[41]
Schüller, C., Kavan, L., Panozzo, D., and Sorkine-Hornung, O. 2013. Locally injective mappings. Comput. Graph. Forum 32, 5, 125--135.
[42]
Seo, H., and Magnenat-Thalmann, N. 2003. An automatic modeling of human bodies from sizing parameters. In Proc. I3D, 19--26.
[43]
Shoemake, K., and Duff, T. 1992. Matrix animation and polar decomposition. In Proc. Graphics interface, vol. 92, 258--264.
[44]
Si, W., Lee, S.-H., Sifakis, E., and Terzopoulos, D. 2015. Realistic biomechanical simulation and control of human swimming. ACM Trans. Graph. 34, 1, 10.
[45]
Si, H. 2011. A quality tetrahedral mesh generator and three-dimensional delaunay triangulator.
[46]
Sifakis, E., and Barbic, J. 2012. FEM simulation of 3D deformable solids: a practitioner's guide to theory, discretization and model reduction. In ACM SIGGRAPH 2012 Courses, 20.
[47]
Sifakis, E., Neverov, I., and Fedkiw, R. 2005. Automatic determination of facial muscle activations from sparse motion capture marker data. ACM Trans. Graph. 24, 3, 417--425.
[48]
Skouras, M., Thomaszewski, B., Bickel, B., and Gross, M. 2012. Computational design of rubber balloons. Comput. Graph. Forum 31, 24.
[49]
Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rössl, C., and Seidel, H.-P. 2004. Laplacian surface editing. In Proc. SGP, 175--184.
[50]
Taber, L. A. 1995. Biomechanics of growth, remodeling, and morphogenesis. Applied mechanics reviews 48, 8, 487--545.
[51]
Taber, L. A. 1998. Biomechanical growth laws for muscle tissue. Journal of theoretical biology 193, 2, 201--213.
[52]
Teran, J., Blemker, S., Hing, V., and Fedkiw, R. 2003. Finite volume methods for the simulation of skeletal muscle. In Proc. SCA, 68--74.
[53]
Teran, J., Sifakis, E., Blemker, S. S., Ng-Thow-Hing, V., Lau, C., and Fedkiw, R. 2005. Creating and simulating skeletal muscle from the visible human data set. IEEE Trans. Vis. Comput. Graphi. 11, 3, 317--328.
[54]
Teran, J., Sifakis, E., Irving, G., and Fedkiw, R. 2005. Robust quasistatic finite elements and flesh simulation. In Proc. SCA, 181--190.
[55]
Thompson, D. W. 1942. On growth and form.
[56]
Wilhelms, J., and Van Gelder, A. 1997. Anatomically based modeling. In Proc. SIGGRAPH, 173--180.
[57]
Wisdom, K., Delp, S., and Kuhl, E. 2015. Use it or lose it: multiscale skeletal muscle adaptation to mechanical stimuli. Biomechanics and Modeling in Mechanobiology 14, 2, 195--215.
[58]
Wolfram-Gabel, R., Beaujeux, R., Fabre, M., Kehrli, P., Dietemann, J., and Bourjat, P. 1996. Histologic characteristics of posterior lumbar epidural fatty tissue. Journal of neuroradiology 23, 1, 19--25.
[59]
Zhou, S., Fu, H., Liu, L., Cohen-Or, D., and Han, X. 2010. Parametric reshaping of human bodies in images. ACM Trans. Graph. 29, 4, 126.

Cited By

View all
  • (2025)Estimating Human Fat and Muscle Conductivity From 100 Hz to 1 MHz Using Measurements and ModellingBioelectromagnetics10.1002/bem.2254146:1Online publication date: 18-Jan-2025
  • (2024)A Neural Network Model for Efficient Musculoskeletal-Driven Skin DeformationACM Transactions on Graphics10.1145/365813543:4(1-12)Online publication date: 19-Jul-2024
  • (2024)HIT: Estimating Internal Human Implicit Tissues from the Body Surface2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)10.1109/CVPR52733.2024.00334(3480-3490)Online publication date: 16-Jun-2024
  • Show More Cited By

Index Terms

  1. Computational bodybuilding: anatomically-based modeling of human bodies

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 34, Issue 4
    August 2015
    1307 pages
    ISSN:0730-0301
    EISSN:1557-7368
    DOI:10.1145/2809654
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 27 July 2015
    Published in TOG Volume 34, Issue 4

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. 3D anatomy
    2. growth models
    3. human body modeling
    4. physics-based animation

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)47
    • Downloads (Last 6 weeks)3
    Reflects downloads up to 19 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2025)Estimating Human Fat and Muscle Conductivity From 100 Hz to 1 MHz Using Measurements and ModellingBioelectromagnetics10.1002/bem.2254146:1Online publication date: 18-Jan-2025
    • (2024)A Neural Network Model for Efficient Musculoskeletal-Driven Skin DeformationACM Transactions on Graphics10.1145/365813543:4(1-12)Online publication date: 19-Jul-2024
    • (2024)HIT: Estimating Internal Human Implicit Tissues from the Body Surface2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)10.1109/CVPR52733.2024.00334(3480-3490)Online publication date: 16-Jun-2024
    • (2024)SparseSoftDECA — Efficient high-resolution physics-based facial animation from sparse landmarksComputers & Graphics10.1016/j.cag.2024.103903119(103903)Online publication date: Apr-2024
    • (2024)On Predicting 3D Bone Locations Inside the Human BodyMedical Image Computing and Computer Assisted Intervention – MICCAI 202410.1007/978-3-031-72384-1_32(336-346)Online publication date: 7-Oct-2024
    • (2024)AutoSkull: Learning-Based Skull Estimation for Automated PipelinesMedical Image Computing and Computer Assisted Intervention – MICCAI 202410.1007/978-3-031-72104-5_11(109-118)Online publication date: 3-Oct-2024
    • (2023)SoftDECA: Computationally Efficient Physics-Based Facial AnimationsProceedings of the 16th ACM SIGGRAPH Conference on Motion, Interaction and Games10.1145/3623264.3624439(1-11)Online publication date: 15-Nov-2023
    • (2023)From Skin to Skeleton: Towards Biomechanically Accurate 3D Digital HumansACM Transactions on Graphics10.1145/361838142:6(1-12)Online publication date: 5-Dec-2023
    • (2023)Numerical instability of Hill-type muscle modelsJournal of The Royal Society Interface10.1098/rsif.2022.043020:199Online publication date: Feb-2023
    • (2023)Decomposition of musculoskeletal structures from radiographs using an improved CycleGAN frameworkScientific Reports10.1038/s41598-023-35075-x13:1Online publication date: 25-May-2023
    • Show More Cited By

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media