skip to main content
research-article

A New Uncertainty Budgeting-Based Method for Robust Analog/Mixed-Signal Design

Published: 02 December 2015 Publication History

Abstract

This article proposes a novel methodology for robust analog/mixed-signal IC design by introducing a notion of budget of uncertainty. This method employs a new conic uncertainty model to capture process variability and describes variability-affected circuit design as a set-based robust optimization problem. For a prespecified yield requirement, the proposed method conducts uncertainty budgeting by associating performance yield with the size of uncertainty set for process variations. Hence the uncertainty budgeting problem can be further translated into a tractable robust optimization problem. Compared with the existing robust design flow based on ellipsoid model, this method is able to produce more reliable design solutions by allowing varying size of conic uncertainty set at different design points. In addition, the proposed method addresses the limitation that the size of the ellipsoid model is calculated solely relying on the distribution of process parameters, while neglecting the dependence of circuit performance upon these design parameters. The proposed robust design framework has been verified on various analog/mixed-signal circuits to demonstrate its efficiency against the ellipsoid model. Up to 24% reduction of design cost has been achieved by using the uncertainty budgeting-based method.

References

[1]
M. Anis and M. H. Aburahma. 2005. Leakage current variability in nanometer technologies. In Proceedings of the International Workshop on System-on-Chip for Real-Time Applications (IWSOC'05). 60--63.
[2]
A. Beck and M. Teboulle. 2009. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imag. Sci. 2, 1 (2009), 183--202.
[3]
D. Bertsimas, D. B. Brown, and C. Caramanis. 2011. Theory and applications of robust optimization. SIAM Rev. 53, 3 (2011), 464--501.
[4]
D. Bertsimas and M. Sim. 2004. The price of robustness. Oper. Res. 52, 1 (2004), 35--53.
[5]
D. Bertsimas and A. Thiele. 2006. Robust and data-driven optimization: Modern decision-making under uncertainty. In Tutorials in Operations Research: Models, Methods, And Applications for Innovative Decision Making, INFORMS.
[6]
C. Bishop. 2006. Pattern Recognition and Machine Learning. Springer, Berlin.
[7]
D. Boning and S. Nassif. 2001. Models of process variations in device and interconnect. In Design of High-Performance Microprocessor Circuits, Chapter 6. A. Chandrakasan, W. J. Bowhill, and F. Cox (Eds.), IEEE Press, 98--115.
[8]
S. Boyd and L. Vandenberghe. 2004. Convex Optimization. Cambridge University Press, New York, NY.
[9]
H. Chang and S. Sapatnekar. 2003. Statistical timing analysis considering spatial correlation using a single PERT-like traversal. In Proceedings of the International Conference on Computer-Aided Design (ICCAD'03). 621--625.
[10]
L. Cheng, F. Gong, W. Xu, J. Xiong, L. He, and M. Sarrafzadeh. 2012. Fourier series approximation for max operation in non-Gaussian and quadratic statistical static timing analysis. IEEE Trans. VLSI Syst. 20, 8 (2012), 1383--1391.
[11]
L. Cheng, W. Xu, F. Ren, F. Gong, P. Gupta, and L. He. 2014. Statistical timing and power analysis of VLSI considering non-linear dependence. Integr. VLSI J. 47, 4 (2014), 487--498.
[12]
B. Efron, T. Hastie, and I. Johnstone. 2004. Least angle regression. Ann. Stat. 32, 2 (2004), 407--499.
[13]
M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright. 2007. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems. IEEE J. Select. Topics Signal Process. 1, 4 (2007), 586--597.
[14]
F. Gong, S. Basir-Kazeruni, L. He, and H. Yu. 2013. Stochastic behavioral modeling and analysis for analog/mixed-signal circuits. IEEE Trans. Comput. Aid. Des. Integr. Circuits Syst. 32, 1 (2013), 24--33.
[15]
B. Hargreaves, H. Hult, and S. Reda. 2008. Within-die process variations: How accurately can they be statistically modeled? In Proceedings of the Asia and South Pacific Design Automation Conference (ASPDAC'08). 524--530.
[16]
T. Hastie, R. Tibshirani, and J. Friedman. 2003. The Elements of Statistical Learning, Springer, Berlin.
[17]
X. Li. 2010. Finding deterministic solution from underdetermined equation: large-scale performance variability modeling of analog/RF circuits. IEEE Trans. Comput. Aid. Des. Integr. Circuits Syst. 29, 11 (2010), 1661--1668.
[18]
X. Li, J. Le, L. Pileggi, and A. Strojwas. 2005. Projection-based performance modeling for inter/intra-die variations. In Proceedings of the International Conference on Computer-Aided Design (ICCAD'05). 721--727.
[19]
M. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret. 1998. Applications of second-order cone programming. Linear Algebra Appl. 284, 1--3 (1998), 193--228.
[20]
T. McConaghy and G. Gielen. 2009. Template-free symbolic performance modeling of analog circuits via canonical-form functions and genetic programming. IEEE Trans. Comput.-Aid. Des. Integr. Circuits Syst. 28, 8 (2009), 1162--1175.
[21]
H. G. Mohammadi, P.-E. Gaillardon, M. Yazdani, and G. De Micheli. 2014. Fast process variation analysis in nano-scaled technologies using column-wise sparse parameter selection. In Proceedings of the International Symposium on Nanoscale Architectures (NANOARCH'14). 163--168.
[22]
B. K. Natarajan. 1995. Sparse approximate solutions to linear systems. SIAM J. Comput. 24, 2 (1995), 227--234.
[23]
M. Orshansky, S. Nassif, and D. Boning. 2008. Design for Manufacturability and Statistical Design: A Constructive Approach. Springer, New York, NY.
[24]
M. Pelgrom, A. C. Duinmaijer, and A. P. Welbers. 1989. Matching properties of MOS transistors. IEEE J. Solid-State Circuits 24, 5 (1989), 1433--1440.
[25]
S. Roy and A. Asenov. 2005. Where do the dopants go? Science 309, 5733 (2005), 388--390.
[26]
G. Seber. 1984. Multivariate Observations. Wiley Series, Hoboken, NJ.
[27]
A. K. Singh, M. Lok, K. Ragab, C. Caramanis, and M. Orshansky. 2009. Robust analog design for automotive applications by design centering with safe operating areas. IEEE Trans. Semiconduct. Manufact. 22, 2 (2009), 217--224.
[28]
J. Singh, V. Nookala, Z. Luo, and S. Sapatnekar. 2011. A geometric programming-based worst case gate sizing method incorporating spatial correlation. IEEE Trans. Comput.-Aid. Des. Integr. Circuits Syst. 53, 3 (2011), 464--501.
[29]
J. Singh and S. S. Sapatnekar. 2008. A scalable statistical static timing analyzer incorporating correlated non-Gaussian and Gaussian parameter variations. IEEE Trans. Comput.-Aid. Des. Integr. Circuits Syst. 27, 1 (2008), 160--173.
[30]
U. Sobe, K.-H. Rooch, A. Ripp, and M. Pronath. 2009. Robust analog design for automotive applications by design centering with safe operating areas. IEEE Trans. Semiconduct. Manufact. 22, 2 (2009), 217--224.
[31]
M. L. Stein. 1999. Interpolation of Spatial Data. Springer, New York, NY.
[32]
M. W. Tian and C.-J. R. Shi. 2000. Worst case tolerance analysis of linear analog circuits using sensitivity bands. IEEE Trans. Circuits Syst. I: Fundamental Theory and Applications 47, 8 (2000), 1138--1145.
[33]
R. Tibshirani. 1996. Regression shrinkage and selection via the Lasso. J. Royal Stat. Soc. 58, 1 (1996), 267--288.
[34]
J. Xiong, V. Zolotov, and L. He. 2006. Robust extraction of spatial correlation. In Proceedings of the International Symposium on Physical Design (ISPD'06). 2--9.
[35]
Yang Xu, Kan-Lin Hsiung, Xin Li, Lawrence T. Pileggi, and Stephen P. Boyd. 2009. Regular analog/RF integrated circuits design using optimization with recourse including ellipsoidal uncertainty. IEEE Trans. Comput. Aid. Des. Integr. Circuits Syst. 28, 5 (2009), 623--637.
[36]
A. Y. Yang, Z. Zhou, A. G. Balasubramanian, S. S. Sastry, and Y. Ma. 2013. Fast ℓ1-minimization algorithms for robust face recognition. IEEE Trans. Image Process. 22, 8 (2013), 3234--3246.
[37]
H. Yu, X. Liu, H. Wang, and S. Tan. 2010. A fast analog mismatch analysis by an incremental and stochastic trajectory piecewise linear macromodel. In Proceedings of the Asia and South Pacific Design Automation Conference (ASPDAC'10). 211--216.
[38]
W. Zhang, K. Balakrishnan, X. Li, D. Boning, S. Saxena, A. Strojwas, and R. Rutenbar. 2013. Efficient spatial pattern analysis for variation decomposition via robust sparse regression. IEEE Trans. Comput.-Aid. Des. Integr. Circuits Syst. 32, 7 (2013), 1072--1085.

Index Terms

  1. A New Uncertainty Budgeting-Based Method for Robust Analog/Mixed-Signal Design

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Design Automation of Electronic Systems
    ACM Transactions on Design Automation of Electronic Systems  Volume 21, Issue 1
    November 2015
    464 pages
    ISSN:1084-4309
    EISSN:1557-7309
    DOI:10.1145/2852253
    • Editor:
    • Naehyuck Chang
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Journal Family

    Publication History

    Published: 02 December 2015
    Accepted: 01 May 2015
    Revised: 01 March 2015
    Received: 01 December 2014
    Published in TODAES Volume 21, Issue 1

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Robust design
    2. budget of uncertainty
    3. performance yield
    4. process variations
    5. uncertainty set

    Qualifiers

    • Research-article
    • Research
    • Refereed

    Funding Sources

    • National Science Foundation

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 108
      Total Downloads
    • Downloads (Last 12 months)9
    • Downloads (Last 6 weeks)2
    Reflects downloads up to 05 Mar 2025

    Other Metrics

    Citations

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media