skip to main content
10.1145/2783258.2783278acmconferencesArticle/Chapter ViewAbstractPublication PageskddConference Proceedingsconference-collections
research-article

Edge-Weighted Personalized PageRank: Breaking A Decade-Old Performance Barrier

Published: 10 August 2015 Publication History

Abstract

Personalized PageRank is a standard tool for finding vertices in a graph that are most relevant to a query or user. To personalize PageRank, one adjusts node weights or edge weights that determine teleport probabilities and transition probabilities in a random surfer model. There are many fast methods to approximate PageRank when the node weights are personalized; however, personalization based on edge weights has been an open problem since the dawn of personalized PageRank over a decade ago. In this paper, we describe the first fast algorithm for computing PageRank on general graphs when the edge weights are personalized. Our method, which is based on model reduction, outperforms existing methods by nearly five orders of magnitude. This huge performance gain over previous work allows us --- for the very first time --- to solve learning-to-rank problems for edge weight personalization at interactive speeds, a goal that had not previously been achievable for this class of problems.

Supplementary Material

MP4 File (p1325.mp4)

References

[1]
GNU Linear Programming Kit. http://www.gnu.org/software/glpk/.
[2]
SciPy. http://www.scipy.org/index.html.
[3]
A. Agarwal, S. Chakrabarti, and S. Aggarwal. Learning to rank networked entities. In KDD, 2006.
[4]
R. Andersen, F. Chung, and K. Lang. Local graph partitioning using PageRank vectors. In FOCS, 2006.
[5]
A. C. Antoulas. Approximation of Large-Scale Dynamical Systems. SIAM, 2005.
[6]
A. C. Antoulas, C. A. Beattie, and S. Gugercin. Interpolatory model reduction of large-scale dynamical systems. In Efficient modeling and control of large-scale systems, pages 3--58. Springer, 2010.
[7]
L. Backstrom and J. Leskovec. Supervised random walks: predicting and recommending links in social networks. In WSDM, 2011.
[8]
B. Bahmani, A. Chowdhury, and A. Goel. Fast incremental and personalized pagerank. PVLDB, 4(3):173--184, 2010.
[9]
A. Balmin, V. Hristidis, and Y. Papakonstantinou. Objectrank: Authority-based keyword search in databases. In VLDB, 2004.
[10]
P. Berkhin. A survey on PageRank computing. Internet Mathematics, 2(1):73--120, 2005.
[11]
P. Berkhin. Bookmark-Coloring Algorithm for Personalized PageRank Computing. Internet Mathematics, 3:41--62, 2006.
[12]
B. Bi, Y. Tian, Y. Sismanis, A. Balmin, and J. Cho. Scalable topic-specific influence analysis on microblogs. In WSDM, 2014.
[13]
S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine. Computer networks and ISDN systems, 30(1):107--117, 1998.
[14]
H.-J. Bungartz and M. Griebel. Sparse grids. Acta numerica, 13:147--269, 2004.
[15]
S. Chaturantabut and D. C. Sorensen. Nonlinear model reduction via discrete empirical interpolation. SIAM J. Sci. Comput., 32(5):2737--2764, 2010.
[16]
P. G. Constantine and D. F. Gleich. Using polynomial chaos to compute the influence of multiple random surfers in the pagerank model. In Algorithms and Models for the Web-Graph, pages 82--95. Springer, 2007.
[17]
P. G. Constantine and D. F. Gleich. Random alpha PageRank. Internet Mathematics, 6(2):189--236, 2009.
[18]
P. G. Constantine, D. F. Gleich, and G. Iaccarino. Spectral methods for parameterized matrix equations. SIAM J. Matrix Anal. Appl., 31(5):2681--2699, 2010.
[19]
P. G. Constantine, D. F. Gleich, and G. Iaccarino. A factorization of the spectral Galerkin system for parameterized matrix equations: Derivation and applications. SIAM J. Sci. Comput., 33(5):2995--3009, 2011.
[20]
W. Feng and J. Wang. Incorporating heterogeneous information for personalized tag recommendation in social tagging systems. In KDD, 2012.
[21]
B. Gao, T.-Y. Liu, W. Wei, T. Wang, and H. Li. Semi-supervised ranking on very large graphs with rich metadata. In KDD, 2011.
[22]
D. F. Gleich. PageRank beyond the web. arXiv, cs.SI:1407.5107, 2014.
[23]
G. Golub and C. Van Loan. Matrix Computations. The Johns Hopkins University Press, fourth edition, 2012.
[24]
M. A. Grepl, Y. Maday, N. C. Nguyen, and A. T. Patera. Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations. ESAIM: Mathematical Modelling and Numerical Analysis, 41(03):575--605, 2007.
[25]
W. Hager. Condition estimates. SIAM J. Sci. Stat. Comput., 5(2):311--316, 1984.
[26]
T. H. Haveliwala. Topic-sensitive PageRank. In WWW, 2002.
[27]
N. J. Higham and F. Tisseur. A block algorithm for matrix 1-norm estimation with an application to 1-norm pseudospectra. SIAM J. Matrix Anal. Appl., 21:1185--1201, 2000.
[28]
V. Hristidis, Y. Wu, and L. Raschid. Efficient ranking on entity graphs with personalized relationships. IEEE Trans. Knowl. Data Eng., 26(4):850--863, 2014.
[29]
G. Jeh and J. Widom. Scaling personalized web search. In WWW, 2003.
[30]
B. Jiang. Ranking spaces for predicting human movement in an urban environment. International Journal of Geographical Information Science, 23(7):823--837, 2009.
[31]
R. Kumar and S. Vassilvitskii. Generalized distances between rankings. In WWW, 2010.
[32]
A. N. Langville and C. D. Meyer. Deeper inside PageRank. Internet Mathematics, 1(3):335--380, 2004.
[33]
W. J. Morokoff and R. E. Caflisch. Quasi-random sequences and their discrepancies. SIAM J. Sci. Comput., 15(6):1251--1279, 1994.
[34]
Z. Nie, Y. Zhang, J.-R. Wen, and W.-Y. Ma. Object-level ranking: bringing order to web objects. In WWW, 2005.
[35]
A. Paul-Duboise-Taine and D. Amsallem. An adaptive and efficient greedy procedure for the optimal training of parametric reduced-order models. Int. J. Numer. Meth. Engng., 2014.
[36]
R. Pinnau. Model reduction via proper orthogonal decomposition. In Model Order Reduction: Theory, Research Aspects and Applications, pages 95--109. Springer, 2008.
[37]
M. Rathinam and L. R. Petzold. A new look at proper orthogonal decomposition. SIAM J. Num. Anal., 41(5):1893--1925, 2003.
[38]
C. Sanderson. Armadillo: An open source C linear algebra library for fast prototyping and computationally intensive experiments. Technical report, NICTA, Australia, October 2010.
[39]
W. Schilders. Model Order Reduction: Theory, Research Aspects and Applications, volume 13 of Mathematics in Industry. Springer, Berlin, 2008.
[40]
J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su. ArnetMiner: extraction and mining of academic social networks. In KDD, 2008.
[41]
R. Varadarajan, V. Hristidis, and L. Raschid. Explaining and reformulating authority flow queries. In ICDE, 2008.
[42]
R. Varadarajan, V. Hristidis, L. Raschid, M. Vidal, L. D. Ibíñez, and H. Rodríguez-Drumond. Flexible and efficient querying and ranking on hyperlinked data sources. In EDBT, 2009.
[43]
J. Weng, E.-P. Lim, J. Jiang, and Q. He. TwitterRank: finding topic-sensitive influential twitterers. In WSDM, 2010.
[44]
W. Xing and A. Ghorbani. Weighted PageRank algorithm. In CNSR, 2004.

Cited By

View all
  • (2024)Efficient Algorithms for Personalized PageRank Computation: A SurveyIEEE Transactions on Knowledge and Data Engineering10.1109/TKDE.2024.337600036:9(4582-4602)Online publication date: Sep-2024
  • (2024)High connectivity and human movement limits the impact of travel time on infectious disease transmissionJournal of The Royal Society Interface10.1098/rsif.2023.042521:210Online publication date: 10-Jan-2024
  • (2024)Extending Network Tools to Explore Trends in Temporal Granular Trade NetworksComplex Networks XV10.1007/978-3-031-57515-0_6(71-83)Online publication date: 14-Apr-2024
  • Show More Cited By

Index Terms

  1. Edge-Weighted Personalized PageRank: Breaking A Decade-Old Performance Barrier

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    KDD '15: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
    August 2015
    2378 pages
    ISBN:9781450336642
    DOI:10.1145/2783258
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 10 August 2015

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tag

    1. personalized pagerank

    Qualifiers

    • Research-article

    Funding Sources

    Conference

    KDD '15
    Sponsor:

    Acceptance Rates

    KDD '15 Paper Acceptance Rate 160 of 819 submissions, 20%;
    Overall Acceptance Rate 1,133 of 8,635 submissions, 13%

    Upcoming Conference

    KDD '25

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)31
    • Downloads (Last 6 weeks)1
    Reflects downloads up to 07 Mar 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Efficient Algorithms for Personalized PageRank Computation: A SurveyIEEE Transactions on Knowledge and Data Engineering10.1109/TKDE.2024.337600036:9(4582-4602)Online publication date: Sep-2024
    • (2024)High connectivity and human movement limits the impact of travel time on infectious disease transmissionJournal of The Royal Society Interface10.1098/rsif.2023.042521:210Online publication date: 10-Jan-2024
    • (2024)Extending Network Tools to Explore Trends in Temporal Granular Trade NetworksComplex Networks XV10.1007/978-3-031-57515-0_6(71-83)Online publication date: 14-Apr-2024
    • (2023)A Scientific Paper Recommendation Framework Based on Multi-Topic Communities and Modified PageRankIEEE Access10.1109/ACCESS.2023.325118911(25303-25317)Online publication date: 2023
    • (2022)Toward Point-of-Interest Recommendation Systems: A Critical Review on Deep-Learning ApproachesElectronics10.3390/electronics1113199811:13(1998)Online publication date: 26-Jun-2022
    • (2022)A New BAT and PageRank Algorithm for Propagation Probability in Social NetworksApplied Sciences10.3390/app1214685812:14(6858)Online publication date: 6-Jul-2022
    • (2022)Significant Subgraph Detection in Multi-omics Networks for Disease Pathway IdentificationFrontiers in Big Data10.3389/fdata.2022.8946325Online publication date: 22-Jun-2022
    • (2022)Edge-based local push for personalized PageRankProceedings of the VLDB Endowment10.14778/3523210.352321615:7(1376-1389)Online publication date: 1-Mar-2022
    • (2021)Using Graph Algorithms for Skills Gap Analysis2021 Systems and Information Engineering Design Symposium (SIEDS)10.1109/SIEDS52267.2021.9483769(1-6)Online publication date: 30-Apr-2021
    • (2021)A Technique For Analyzing Banking Transactions To Identify Fraudulent Activities In E-commerce2021 International Conference on Electrical, Computer and Energy Technologies (ICECET)10.1109/ICECET52533.2021.9698673(1-4)Online publication date: 9-Dec-2021
    • Show More Cited By

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media