skip to main content
column

A Social Formalism and Survey for Recommender Systems

Published: 21 May 2015 Publication History

Abstract

This paper presents a general formalism for Recommender Systems based on Social Network Analysis. After introducing the classical categories of recommender systems, we present our Social Filtering formalism and show that it extends association rules, classical Collaborative Filtering and Social Recommendation, while providing additional possibilities. This allows us to survey the literature and illustrate the versatility of our approach on various publicly available datasets, comparing our results with the literature.

References

[1]
G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. Knowledge and Data Engineering, IEEE Transactions on, 17(6):734--749, 2005.
[2]
D. Agarwal and B.-C. Chen. Regression-based latent factor models. In Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 19--28. ACM, 2009.
[3]
F. Aiolli. Efficient top-n recommendation for very large scale binary rated datasets. In Proceedings of the 7th ACM Conference on Recommender Systems, RecSys '13, pages 273--280, New York, NY, USA, 2013. ACM.
[4]
J. Aranda, I. Givoni, J. Handcock, and D. Tarlow. An online social network-based recommendation system. Toronto, Ontario, Canada, 2007.
[5]
P. Avesani, P. Massa, and R. Tiella. A trust-enhanced recommender system application: Moleskiing. In Proceedings of the 2005 ACM symposium on Applied computing, pages 1589--1593. ACM, 2005.
[6]
J. Bennett and S. Lanning. The netix prize. In Proceedings of KDD cup and workshop, volume 2007, page 35, 2007.
[7]
V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10):P10008, 2008.
[8]
J. Bobadilla, F. Ortega, A. Hernando, and A. Gutiérrez. Recommender systems survey. Knowledge-Based Systems, 46:109--132, 2013.
[9]
C. Borgelt. Frequent item set mining. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(6):437--456, 2012.
[10]
D. M. Boyd and N. B. Ellison. Social network sites: Definition, history, and scholarship. Journal of Computer- Mediated Communication, 13(1):210--230, 2008.
[11]
J. S. Breese, D. Heckerman, and C. Kadie. Empirical analysis of predictive algorithms for collaborative _ltering. In Proceedings of the Fourteenth conference on Uncertainty in arti_cial intelligence, pages 43--52. Morgan Kaufmann Publishers Inc., 1998.
[12]
D. Carmel, N. Zwerdling, I. Guy, S. Ofek-Koifman, N. Har'El, I. Ronen, E. Uziel, S. Yogev, and S. Chernov. Personalized social search based on the user's social network. In Proceedings of the 18th ACM conference on Information and knowledge management, pages 1227--1236. ACM, 2009.
[13]
J.-C. de Borda. On elections by ballot. Classics of social choice, eds. I. McLean, AB Urken, and F. Hewitt, pages 83--89, 1995.
[14]
L. M. de Campos, J. M. Fern_andez-Luna, and J. F. Huete. A collaborative recommender system based on probabilistic inference from fuzzy observations. Fuzzy Sets and Systems, 159(12):1554--1576, 2008.
[15]
Z. Despotovic and K. Aberer. A probabilistic approach to predict peers' performance in p2p networks. In Cooperative Information Agents VIII, pages 62--76. Springer, 2004.
[16]
M. Diaby, E. Viennet, and T. Launay. Toward the next generation of recruitment tools: an online social network-based job recommender system. In Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pages 821--828. ACM, 2013.
[17]
M. Diaby, E. Viennet, and T. Launay. Exploration of methodologies to improve job recommender systems on social networks. Social Network Analysis and Mining, 4(1):1--17, 2014.
[18]
M. D. Ekstrand, J. T. Riedl, and J. A. Konstan. Collaborative filtering recommender systems. Foundations and Trends in Human-Computer Interaction, 4(2):81--173, 2011.
[19]
M. Gartrell, X. Xing, Q. Lv, A. Beach, R. Han, S. Mishra, and K. Seada. Enhancing group recommendation by incorporating social relationship interactions. In Proceedings of the 16th ACM international conference on Supporting group work, pages 97--106. ACM, 2010.
[20]
J. A. Golbeck. Computing and applying trust in webbased social networks. 2005.
[21]
R. Guha, R. Kumar, P. Raghavan, and A. Tomkins. Propagation of trust and distrust. In Proceedings of the 13th international conference on World Wide Web, pages 403--412. ACM, 2004.
[22]
R. Guimera, M. Sales-Pardo, and L. A. N. Amaral. Module identi_cation in bipartite and directed networks. Physical Review E, 76(3):036102, 2007.
[23]
M. Gupte and T. Eliassi-Rad. Measuring tie strength in implicit social networks. In Proceedings of the 3rd Annual ACM Web Science Conference, pages 109--118. ACM, 2012.
[24]
J. He and W. W. Chu. A social network-based recommender system (SNRS). Springer, 2010.
[25]
Y. Hu, Y. Koren, and C. Volinsky. Collaborative _ltering for implicit feedback datasets. In Data Mining, 2008. ICDM'08. Eighth IEEE International Conference on, pages 263--272. IEEE, 2008.
[26]
M. Jamali and M. Ester. A matrix factorization technique with trust propagation for recommendation in social networks. In Proceedings of the fourth ACM conference on Recommender systems, pages 135--142. ACM, 2010.
[27]
D. Jannach, M. Zanker, A. Felfernig, and G. Friedrich. Recommender systems: an introduction. Cambridge University Press, 2010.
[28]
J. Kim and H. Park. Fast nonnegative matrix factorization: An active-set-like method and comparisons. SIAM Journal on Scienti_c Computing, 33(6):3261-- 3281, 2011.
[29]
M. W. Kim, E. J. Kim, and J. W. Ryu. A collaborative recommendation based on neural networks. In Database Systems for Advanced Applications, pages 425--430. Springer, 2004.
[30]
Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems. Computer, 42(8):30--37, 2009.
[31]
D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factorization. Nature, 401(6755):788--791, 1999.
[32]
D. Lemire and A. Maclachlan. Slope one predictors for online rating-based collaborative filtering. In SDM, volume 5, pages 1--5. SIAM, 2005.
[33]
G. Linden, B. Smith, and J. York. Amazon. com recommendations: Item-to-item collaborative filtering. Internet Computing, IEEE, 7(1):76--80, 2003.
[34]
N. N. Liu, M. Zhao, and Q. Yang. Probabilistic latent preference analysis for collaborative filtering. In Proceedings of the 18th ACM conference on Information and knowledge management, pages 759--766. ACM, 2009.
[35]
P. Lops, M. De Gemmis, and G. Semeraro. Contentbased recommender systems: State of the art and trends. In Recommender systems handbook, pages 73--105. Springer, 2011.
[36]
L. Lü and T. Zhou. Link prediction in complex networks: A survey. Physica A: Statistical Mechanics and its Applications, 390(6):1150--1170, 2011.
[37]
H. Ma, I. King, and M. R. Lyu. Learning to recommend with social trust ensemble. In Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval, pages 203--210. ACM, 2009.
[38]
H. Ma, D. Zhou, C. Liu, M. R. Lyu, and I. King. Recommender systems with social regularization. In Proceedings of the fourth ACM international conference on Web search and data mining, pages 287--296. ACM, 2011.
[39]
P. Massa and P. Avesani. Trust-aware collaborative _ltering for recommender systems. In On the Move to Meaningful Internet Systems 2004: CoopIS, DOA, and ODBASE, pages 492--508. Springer, 2004.
[40]
M. McPherson, L. Smith-Lovin, and J. M. Cook. Birds of a feather: Homophily in social networks. Annual review of sociology, pages 415--444, 2001.
[41]
B. N. Miller, I. Albert, S. K. Lam, J. A. Konstan, and J. Riedl. Movielens unplugged: experiences with an occasionally connected recommender system. In Proceedings of the 8th international conference on Intelligent user interfaces, pages 263--266. ACM, 2003.
[42]
A. Mnih and R. Salakhutdinov. Probabilistic matrix factorization. In Advances in neural information processing systems, pages 1257--1264, 2007.
[43]
B. Ngonmang, M. Tchuente, and E. Viennet. Local community identi_cation in social networks. Parallel Processing Letters, 22(01), 2012.
[44]
B. Ngonmang, E. Viennet, S. Sean, F. Fogelman-Souli_e, and R. Kirche. Monetization and services on a real online social network using social network analysis. In Data Mining Workshops (ICDMW), 2013 IEEE 13th International Conference on, pages 185--193. IEEE, 2013.
[45]
J. O'Donovan and B. Smyth. Trust in recommender systems. In Proceedings of the 10th international conference on Intelligent user interfaces, pages 167--174. ACM, 2005.
[46]
M. J. Pazzani and D. Billsus. Content-based recommendation systems. In The adaptive web, pages 325--341. Springer, 2007.
[47]
B. Pradel, S. Sean, J. Delporte, S. Guérif, C. Rouveirol, N. Usunier, F. Fogelman-Souli_e, and F. Dufau-Joel. A case study in a recommender system based on purchase data. In Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 377--385. ACM, 2011.
[48]
M. Richardson, R. Agrawal, and P. Domingos. Trust management for the semantic web. In The Semantic Web-ISWC 2003, pages 351--368. Springer, 2003.
[49]
M. Richardson and P. Domingos. Mining knowledgesharing sites for viral marketing. In Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 61--70. ACM, 2002.
[50]
R. Salakhutdinov and A. Mnih. Bayesian probabilistic matrix factorization using markov chain monte carlo. In Proceedings of the 25th international conference on Machine learning, pages 880--887. ACM, 2008.
[51]
S. Shang, P. Hui, S. R. Kulkarni, and P. W. Cu_. Wisdom of the crowd: Incorporating social inuence in recommendation models. In Parallel and Distributed Systems (ICPADS), 2011 IEEE 17th International Conference on, pages 835--840. IEEE, 2011.
[52]
G. Shani and A. Gunawardana. Evaluating recommendation systems. In Recommender systems handbook, pages 257--297. Springer, 2011.
[53]
R. R. Sinha and K. Swearingen. Comparing recommendations made by online systems and friends. In DELOS workshop: personalisation and recommender systems in digital libraries, volume 106, 2001.
[54]
X. Su and T. M. Khoshgoftaar. A survey of collaborative filtering techniques. Advances in arti_cial intelligence, 2009:4, 2009.
[55]
J. Sun, H. Qu, D. Chakrabarti, and C. Faloutsos. Neighborhood formation and anomaly detection in bipartite graphs. In Data Mining, Fifth IEEE International Conference on, pages 8--pp. IEEE, 2005.
[56]
J. Tang, X. Hu, and H. Liu. Social recommendation: a review. Social Network Analysis and Mining, 3(4):1113-- 1133, 2013.
[57]
C.-Y. Teng, Y.-R. Lin, and L. A. Adamic. Recipe recommendation using ingredient networks. In Proceedings of the 3rd Annual ACM Web Science Conference, pages 298--307. ACM, 2012.
[58]
K. Verstrepen and B. Goethals. Unifying nearest neighbors collaborative _ltering. In Proceedings of the 8th ACM Conference on Recommender systems, pages 177--184. ACM, 2014.
[59]
C. Wang and D. M. Blei. Collaborative topic modeling for recommending scienti_c articles. In Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 448--456. ACM, 2011.
[60]
K. Wang and Y. Tan. A new collaborative _ltering recommendation approach based on naive bayesian method. In Advances in Swarm Intelligence, pages 218--227. Springer, 2011.
[61]
Z. Xia, Y. Dong, and G. Xing. Support vector machines for collaborative _ltering. In Proceedings of the 44th annual Southeast regional conference, pages 169--174. ACM, 2006.
[62]
B. Xu, J. Bu, C. Chen, and D. Cai. An exploration of improving collaborative recommender systems via useritem subgroups. In Proceedings of the 21st international conference on World Wide Web, pages 21--30. ACM, 2012.
[63]
C. Yin, T. Chu, et al. Improving personal product recommendation via friendships' expansion. Journal of Computer and Communications, 1(05):1, 2013.
[64]
R. Zheng, F. Provost, and A. Ghose. Social network collaborative filtering: Preliminary results. In Proceedings of the Sixth Workshop on eBusiness WEB2007, 2007.
[65]
R. Zheng, D. Wilkinson, and F. Provost. Social network collaborative _ltering. Stern, IOMS Department, CeDER, Vol, 2008.
[66]
T. Zhou, J. Ren, M. Medo, and Y.-C. Zhang. Bipartite network projection and personal recommendation. Physical Review E, 76(4):046115, 2007.
[67]
C.-N. Ziegler and G. Lausen. Propagation models for trust and distrust in social networks. Information Systems Frontiers, 7(4-5):337--358, 2005.

Cited By

View all
  • (2023)Deep forest auto-Encoder for resource-Centric attributes graph embeddingPattern Recognition10.1016/j.patcog.2023.109747143(109747)Online publication date: Nov-2023
  • (2023)Weighted, Bipartite, or Directed Stream Graphs for the Modeling of Temporal NetworksTemporal Network Theory10.1007/978-3-031-30399-9_3(49-64)Online publication date: 21-Nov-2023
  • (2021)Multi-modality Search and Recommendation on Palestinian Cultural Heritage Based on the Holy-Land Ontology and Extrinsic Semantic ResourcesJournal on Computing and Cultural Heritage 10.1145/344752314:3(1-23)Online publication date: 1-Jul-2021
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM SIGKDD Explorations Newsletter
ACM SIGKDD Explorations Newsletter  Volume 16, Issue 2
December 2014
49 pages
ISSN:1931-0145
EISSN:1931-0153
DOI:10.1145/2783702
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 21 May 2015
Published in SIGKDD Volume 16, Issue 2

Check for updates

Author Tags

  1. Collaborative Filtering
  2. Recommender systems
  3. Social Network Analysis
  4. Social Recommenders

Qualifiers

  • Column

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)1
  • Downloads (Last 6 weeks)0
Reflects downloads up to 20 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2023)Deep forest auto-Encoder for resource-Centric attributes graph embeddingPattern Recognition10.1016/j.patcog.2023.109747143(109747)Online publication date: Nov-2023
  • (2023)Weighted, Bipartite, or Directed Stream Graphs for the Modeling of Temporal NetworksTemporal Network Theory10.1007/978-3-031-30399-9_3(49-64)Online publication date: 21-Nov-2023
  • (2021)Multi-modality Search and Recommendation on Palestinian Cultural Heritage Based on the Holy-Land Ontology and Extrinsic Semantic ResourcesJournal on Computing and Cultural Heritage 10.1145/344752314:3(1-23)Online publication date: 1-Jul-2021
  • (2021)Measuring diversity in heterogeneous information networksTheoretical Computer Science10.1016/j.tcs.2021.01.013859(80-115)Online publication date: Mar-2021
  • (2021)Beyond Laplacian Smoothing for Semi-supervised Community DetectionKnowledge Science, Engineering and Management10.1007/978-3-030-82153-1_15(174-187)Online publication date: 14-Aug-2021
  • (2020)ModMRF: A Modularity-based Markov Random Field Method for Community DetectionNeurocomputing10.1016/j.neucom.2020.04.067Online publication date: May-2020
  • (2020)What to See in a Scientific Event? A Social Recommendation Model of Technical SessionsSoftware Ecosystems, Sustainability and Human Values in the Social Web10.1007/978-3-030-46130-0_6(99-119)Online publication date: 23-Apr-2020
  • (2020)Recommender Systems and Attributed NetworksAdvances in Data Science10.1002/9781119695110.ch7(139-167)Online publication date: 15-Jan-2020
  • (2019)A method for updating ontology-based user Profile in personalized Document Retrieval System using Bayesian networksJournal of Intelligent & Fuzzy Systems10.3233/JIFS-179343(1-10)Online publication date: 22-Jul-2019
  • (2019)Detecting shilling attacks in social recommender systems based on time series analysis and trust featuresKnowledge-Based Systems10.1016/j.knosys.2019.04.012178:C(25-47)Online publication date: 15-Aug-2019
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media