skip to main content
10.1145/2786784.2786802acmconferencesArticle/Chapter ViewAbstractPublication PagesscaConference Proceedingsconference-collections
research-article
Best Paper

Learning reduced-order feedback policies for motion skills

Published:07 August 2015Publication History

ABSTRACT

We introduce a method for learning low-dimensional linear feedback strategies for the control of physics-based animated characters around a given reference trajectory. This allows for learned low-dimensional state abstractions and action abstractions, thereby reducing the need to rely on manually designed abstractions such as the center-of-mass state or foot-placement actions. Once learned, the compact feedback structure allow simulated characters to respond to changes in the environment and changes in goals. The approach is based on policy search in the space of reduced-order linear output feedback matrices. We show that these can be used to replace or further reduce manually-designed state and action abstractions. The approach is sufficiently general to allow for the development of unconventional feedback loops, such as feedback based on ground reaction forces. Results are demonstrated for a mix of 2D and 3D systems, including tilting-platform balancing, walking, running, rolling, targeted kicks, and several types of ball-hitting tasks.

Skip Supplemental Material Section

Supplemental Material

References

  1. Barbič, J., da Silva, M., and Popović, J. 2009. Deformable object animation using reduced optimal control. In ACM SIGGRAPH 2009 papers, ACM, SIGGRAPH '09, 53:1--53:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Berniker, M., Jarc, A., Bizzi, E., and Tresch, M. C. 2009. Simplified and effective motor control based on muscle synergies to exploit musculoskeletal dynamics. Proceedings of the National Academy of Sciences 106, 18, 7601--7606.Google ScholarGoogle ScholarCross RefCross Ref
  3. Box2D., http://box2d.org/.Google ScholarGoogle Scholar
  4. Burke, J., Lewis, A., and Overton, M. 2003. A nonsmooth, nonconvex optimization approach to robust stabilization by static output feedback and low-order controllers. In Proc. ROCOND 2003.Google ScholarGoogle Scholar
  5. Burns, J. A., and King, B. B. 1998. A reduced basis approach to the design of low-order feedback controllers for nonlinear continuous systems. Journal of Vibration and Control 4, 3, 297--323.Google ScholarGoogle ScholarCross RefCross Ref
  6. Coros, S., Beaudoin, P., and van de Panne, M. 2010. Generalized biped walking control. ACM Transctions on Graphics 29, 4, Article 130. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. da Silva, M., Abe, Y., and Popović, J. 2008. Interactive simulation of stylized human locomotion. ACM Trans. Graph. 27 (August), 82:1--82:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. David, J., and De Moor, B. 1994. Designing reduced order output feedback controllers using a potential reduction method. American Control Conference, 1994 1, 845--849.Google ScholarGoogle ScholarCross RefCross Ref
  9. de Lasa, M., Mordatch, I., and Hertzmann, A. 2010. Feature-Based Locomotion Controllers. ACM Transactions on Graphics 29, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. de Oliveira, M., and Geromel, J. 1997. Numerical comparison of output feedback design methods. In American Control Conference, 1997. Proceedings of the 1997, vol. 1, 72--76 vol.1.Google ScholarGoogle Scholar
  11. Hansen, N. 2006. The CMA evolution strategy: a comparing review. In Towards a new evolutionary computation. Advances on estimation of distribution algorithms, J. Lozano, P. Larranaga, I. Inza, and E. Bengoetxea, Eds. Springer, 75--102.Google ScholarGoogle Scholar
  12. Jain, S., and Liu, C. K. 2011. Modal-space control for articulated characters. ACM Trans. Graph. 30 (October), 118:1--118:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. James, D. L., and Pai, D. K. 2002. Dyrt: dynamic response textures for real time deformation simulation with graphics hardware. ACM Trans. Graph. 21 (July), 582--585. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Kry, P. G., Reveret, L., Faure, F., and Cani, M.-P. 2009. Modal locomotion: Animating virtual characters with natural vibrations. Computer Grahics Forum 28, 2.Google ScholarGoogle ScholarCross RefCross Ref
  15. Kwon, T., and Hodgins, J. K. 2010. Control systems for human running using an inverted pendulum model and a reference motion capture sequence. The ACM SIGGRAPH / Eurographics Symposium on Computer Animation (SCA 2010). Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Lall, S., Marsden, J. E., and Glavaški, S. 2002. A subspace approach to balanced truncation for model reduction of nonlinear control systems. International journal of robust and nonlinear control 12, 6, 519--535.Google ScholarGoogle Scholar
  17. Laszlo, J., van de Panne, M., and Eugene, F. 1996. Limit cycle control and its application to the animation of balancing and walking. In SIGGRAPH '96, ACM, 155--162. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Lee, Y., Kim, S., and Lee, J. 2010. Data-driven biped control. ACM Trans. Graph. 29 (July), 129:1--129:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Lewis, F., and Syrmos, V. 1995. Optimal control. A Wiley-Interscience publication. J. Wiley.Google ScholarGoogle Scholar
  20. Liu, L., Yin, K., van de Panne, M., Shao, T., and Xu, W. 2010. Sampling-based contact-rich motion control. ACM Transctions on Graphics 29, 4, Article 128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Liu, L., Yin, K., van de Panne, M., and Guo, B. 2012. Terrain runner: control, parameterization, composition, and planning for highly dynamic motions. ACM Trans. Graph. 31, 6, 154. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Liu, L., Yin, K., Wang, B., and Guo, B. 2013. Simulation and control of skeleton-driven soft body characters. ACM Transactions on Graphics (TOG) 32, 6, 215. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Macchietto, A., Zordan, V., and Shelton, C. R. 2009. Momentum control for balance. ACM Trans. Graph. 28 (July), 80:1--80:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Mordatch, I., de Lasa, M., and Hertzmann, A. 2010. Robust Physics-Based Locomotion Using Low-Dimensional Planning. ACM Transactions on Graphics 29, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Muico, U., Lee, Y., Popović, J., and Popović, Z. 2009. Contact-aware nonlinear control of dynamic characters. ACM Transactions on Graphics 28, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. ODE. Open dynamics engine, http://www.ode.org/.Google ScholarGoogle Scholar
  27. Raibert, M. H., and Hodgins, J. K. 1991. Animation of dynamic legged locomotion. SIGGRAPH Comput. Graph. 25 (July), 349--358. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Safonova, A., Hodgins, J. K., and Pollard, N. S. 2004. Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces. ACM Trans. Graph. 23 (Aug.), 514--521. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Scherer, C., Gahinet, P., and Chilali, M. 1997. Multiobjective output-feedback control via lmi optimization. Automatic Control, IEEE Transactions on 42, 7, 896--911.Google ScholarGoogle ScholarCross RefCross Ref
  30. Slotine, J.-J. E., Li, W., et al. 1991. Applied nonlinear control, vol. 60. Prentice-Hall Englewood Cliffs, NJ.Google ScholarGoogle Scholar
  31. Sok, K. W., Kim, M., and Lee, J. 2007. Simulating biped behaviors from human motion data. ACM Trans. Graph. 26 (July). Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Tan, J., Gu, Y., Liu, C. K., and Turk, G. 2014. Learning bicycle stunts. ACM Transactions on Graphics (TOG) 33, 4, 50. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Treuille, A., Lewis, A., and Popović, Z. 2006. Model reduction for real-time fluids. ACM Transactions on Graphics 25, 3 (July), 826--834. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Tsai, Y.-Y., Lin, W.-C., Cheng, K. B., Lee, J., and Lee, T.-Y. 2010. Real-time physics-based 3d biped character animation using an inverted pendulum model. IEEE Transactions on Visualization and Computer Graphics 16 (March), 325--337. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Wang, J. M., Fleet, D. J., and Hertzmann, A. 2009. Optimizing walking controllers. ACM Trans. Graph. 28 (December), 168:1--168:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Wang, J. M., Fleet, D. J., and Hertzmann, A. 2010. Optimizing walking controllers for uncertain inputs and environments. ACM Trans. Graph. 29 (July), 73:1--73:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Ye, Y., and Liu, C. K. 2010. Optimal feedback control for character animation using an abstract model. ACM Trans. Graph. 29 (July), 74:1--74:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Yin, K., Loken, K., and van de Panne, M. 2007. Simbicon: Simple biped locomotion control. ACM Trans. Graph. 26, 3, Article 105. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Learning reduced-order feedback policies for motion skills

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      SCA '15: Proceedings of the 14th ACM SIGGRAPH / Eurographics Symposium on Computer Animation
      August 2015
      193 pages
      ISBN:9781450334969
      DOI:10.1145/2786784

      Copyright © 2015 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 7 August 2015

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate183of487submissions,38%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader