skip to main content
10.1145/2790060.2790062acmconferencesArticle/Chapter ViewAbstractPublication PageshpgConference Proceedingsconference-collections
research-article

Perception of highlight disparity at a distance in consumer head-mounted displays

Published:07 August 2015Publication History

ABSTRACT

Stereo rendering for 3D displays and for virtual reality headsets provide several visual cues, including convergence angle and highlight disparity. The human visual system interprets these cues to estimate surface properties of the displayed environment. Naïve stereo rendering effectively doubles the computational burden of image synthesis, and thus it is desirable to reuse as many computations as possible between the stereo image pair. Computing a single radiance for a point on a surface, to be used when synthesizing both the left and right images, results in the loss of highlight disparity. Our hypothesis is that absence of highlight disparity does not impair perception of surface properties at larger distances. This is due to an ever decreasing angular difference between the surface and the two view points as distance to the surface is increased. The effect is exacerbated by the limited resolution of consumer head-mounted displays. We verify this hypothesis with a user study and provide rendering guidelines to leverage our findings.

Skip Supplemental Material Section

Supplemental Material

References

  1. Andersson, M., Hasselgren, J., Toth, R., and Akenine-Möller, T. 2014. Adaptive Texture Space Shading for Stochastic Rendering. Computer Graphics Forum, 33, 2, 341--350. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Clarberg, P., and Munkberg, J. 2014. Deep Shading Buffers on Commodity GPUs. ACM Transactions on Graphics, 33, 6, 227:1--227:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Clarberg, P., Toth, R., and Munkberg, J. 2013. A Sort-Based Deferred Shading Architecture for Decoupled Sampling. ACM Transactions on Graphics, 32, 4, 141:1--141:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Clarberg, P., Toth, R., Hasselgren, J., Nilsson, J., and Akenine-Möller, T. 2014. AMFS: Adaptive Multi-Frequency Shading for Future Graphics Processors. ACM Transactions on Graphics, 33, 4, 141:1--141:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Cook, R. L., Carpenter, L., and Catmull, E. 1987. The Reyes Image Rendering Architecture. In Computer Graphics (Proceedings of SIGGRAPH 87), ACM, vol. 21, 95--102. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Didyk, P., Ritschel, T., Eisemann, E., Myszkowski, K., and Seidel, H.-P. 2010. Adaptive Image-space Stereo View Synthesis. In Vision, Modeling and Visualization Workshop, 299--306.Google ScholarGoogle Scholar
  7. Dabała, Ł., Kellnhofer, P., Ritschel, T., Didyk, P., Templin, K., Myszkowski, K., Rokita, P., and Seidel, H.-P. 2014. Manipulating Refractive and Reflective Binocular Disparity. Computer Graphics Forum, 33, 2, 53--62. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Donaldson, T. S. 1966. Power of the F-test for Nonnormal Distributions and Unequal Error Variances. Rand Corporation.Google ScholarGoogle Scholar
  9. Dove, H. W. 1851. Über die Ursachen des Glanzes und der Irradiation, abgeleitet aus chromatischen Versuchen mit dem Stereoskop. Annalen der Physik, 159, 5, 169--183.Google ScholarGoogle ScholarCross RefCross Ref
  10. Ferwerda, J. A., Rushmeier, H., and Watson, B. 2002. Psychometrics 101: How to Design, Conduct, and Analyze Perceptual Experiments in Computer Graphics. In ACM SIGGRAPH Courses.Google ScholarGoogle Scholar
  11. Hasselgren, J., and Akenine-Möller, T. 2006. An Efficient Multi-View Rasterization Architecture. In Eurographics Symposium on Rendering, 61--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Kirschmann, A. 1895. Der Metallglanz und die Parallaxe des indirecten Sehens. Verlag von Wilhelm Engelmann.Google ScholarGoogle Scholar
  13. Liktor, G., and Dachsbacher, C. 2012. Decoupled Deferred Shading for Hardware Rasterization. In Symposium on Interactive 3D Graphics and Games, 143--150. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. McMillan, L., and Bishop, G. 1995. Head-Tracked Stereoscopic Display Using Image Warping. In Proceedings of SPIE 2409, Stereoscopic Displays and Virtual Reality Systems 11, 21--30.Google ScholarGoogle Scholar
  15. Muryy, A., Welchman, A., Blake, A., and Fleming, R. 2013. Specular Reflections and the Estimation of Shape from Binocular Disparity. Proceedings of the National Academy of Sciences, 110, 6, 2413--2418.Google ScholarGoogle ScholarCross RefCross Ref
  16. Nehab, D., Sander, P. V., Lawrence, J., Tatarchuk, N., and Isidoro, J. R. 2007. Accelerating Real-time Shading with Reverse Reprojection Caching. In Graphics Hardware, 25--35. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Ragan-Kelley, J., Lehtinen, J., Chen, J., Doggett, M., and Durand, F. 2011. Decoupled Sampling for Graphics Pipelines. ACM Transactions on Graphics, 30, 3, 17:1--17:17. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Ramanarayanan, G., Ferwerda, J., Walter, B., and Bala, K. 2007. Visual Equivalence: Towards a New Standard for Image Fidelity. ACM Transactions on Graphics, 26, 3 (July), 76:1--76:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Sakano, Y., and Ando, H. 2010. Effects of Head Motion and Stereo Viewing on Perceived Glossiness. Journal of Vision, 10, 9, 15:1--15:14.Google ScholarGoogle ScholarCross RefCross Ref
  20. Sitthi-amorn, P., Lawrence, J., Yang, L., Sander, P. V., and Nehab, D. 2008. An Improved Shading Cache for Modern GPUs. In Graphics Hardware, 95--101. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Sitthi-amorn, P., Lawrence, J., Yang, L., Sander, P. V., Nehab, D., and Xi, J. 2008. Automated Reprojection-based Pixel Shader Optimization. ACM Transactions on Graphics, 27, 5, 127:1--127:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Templin, K., Didyk, P., Ritschel, T., Myszkowski, K., and Seidel, H.-P. 2012. Highlight Microdisparity for Improved Gloss Depiction. ACM Transactions on Graphics, 31, 4, 92:1--92:5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Wang, J., Ren, P., Gong, M., Snyder, J., and Guo, B. 2009. All-frequency Rendering of Dynamic, Spatially-varying Reflectance. ACM Transactions on Graphics, 28, 5, 133:1--133:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Wendt, G., Faul, F., and Mausfeld, R. 2008. Highlight Disparity Contributes to the Autenticity and Strength of Perceived Glossiness. Journal of Vision, 8, 1, 14:1--14:10.Google ScholarGoogle ScholarCross RefCross Ref
  25. Wendt, G., Faul, F., Ekroll, V., and Mausfeld, R. 2010. Disparity, Motion, and Color Information Improve gloss constancy performance. Journal of Vision, 10, 9, 7:1--7:17.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Perception of highlight disparity at a distance in consumer head-mounted displays

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      HPG '15: Proceedings of the 7th Conference on High-Performance Graphics
      August 2015
      112 pages
      ISBN:9781450337076
      DOI:10.1145/2790060

      Copyright © 2015 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 7 August 2015

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate15of44submissions,34%

      Upcoming Conference

      HPG '24
      High-Performance Graphics
      July 26 - 28, 2024
      Denver , CO , USA

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader