skip to main content
10.1145/2791261.2791267acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
research-article

Empirical directional wave spectra for computer graphics

Published:08 August 2015Publication History

ABSTRACT

In this paper, we describe the practical application of several empirically-based, directional ocean wave spectra for use in the Fourier synthesis of animated ocean height fields. We use the Texel MARSEN ARSLOE (TMA) empirical model for the non-directional component of the wave spectrum, and compare a selection of empirically-based directional spreading functions. Additionally, we introduce a novel, normalized parameter called "swell" which modifies the directional spreading to produce wavelength-dependent elongation of waves into parallel wave trains.

This paper builds upon the spectral ocean synthesis techniques popularized for computer graphics in Jerry Tessendorf's popular SIGGRAPH Course, "Simulating Ocean Water" and the accompanying course notes. The advancement of our spectra over the spectrum described by Tessendorf is that it readily gives plausible, attractive results for a wide range of wind speeds, ocean depths, and other physical parameters, without requiring artists to manually adjust gain and filter parameters to compensate for model inaccuracies. Our "swell" parameter additionally provides an intuitive interface for smoothly varying between choppy seas due to local storms and swells from distant weather events.

Skip Supplemental Material Section

Supplemental Material

References

  1. Akram, A., 2015. aaOcean Suite. http://www.amaanakram.com/plugins-shaders/aaocean-suite/.Google ScholarGoogle Scholar
  2. Bouws, E., e. a. 1985. Similarity of the wind wave spectrum in finite depth water, part i - spectral form. Journal of Geophysical Research 90, C1, 975--986.Google ScholarGoogle ScholarCross RefCross Ref
  3. Bouws, E., e. a. 1985. Similarity of the wind wave spectrum in finite depth water, part ii - quasi-equilibrium relations. Journal of Geophysical Research.Google ScholarGoogle ScholarCross RefCross Ref
  4. Cooley, J. W., and Tukey, J. W. 1965. An algorithm for the machine computation of complex fourier series. Mathematics of Computation 19, 297--301.Google ScholarGoogle ScholarCross RefCross Ref
  5. Donelan, M., Hamilton, J., and Hui, W. 1985. Directional spectra for wind-generated waves. Phil. Trans. Roy. London A, 315, 509--562.Google ScholarGoogle ScholarCross RefCross Ref
  6. Foster, N., and Metaxas, D. 1996. Realistic animation of liquids. Graphical Models and Image Processing 58, 5, 471--483. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Fourier, J. 1807. Mmoire sur la propagation de la chaleur dans les corps solides. Nouveau Bulletin des sciences par la Socit philomatique de Paris I, 6, 112116.Google ScholarGoogle Scholar
  8. Fournier, A., and Reeves, W. T. 1986. A simple model of ocean waves. In ACM Trans. Graph. (Proc. of SIGGRAPH), vol. 20, 75--84. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Frigo, M., and Johnson, S. G. 2005. The design and implementation of FFTW3. Proceedings of IEEE 93, 2, 216--231.Google ScholarGoogle ScholarCross RefCross Ref
  10. Hasselmann, K., Barnett, T., Bouws, E., Carlson, H., Cartwright, D., Enke, K., Ewing, J., Gienapp, H., Hasselmanh, D., Kruseman, P., Meerburg, A., Mueller, P., Olbers, D., Richter, K., Sell, W., and Walden, H. 1973. Measurements of wind-wave growth and swell decay during the joint north sea wave project (JONSWAP). Ergnzungsheft zur Deutschen Hydrographischen Zeitschrift Reihe 8, 12, 95.Google ScholarGoogle Scholar
  11. Holthuijsen, L. H. 2007. Waves in Oceanic and Coastal Waters. Cambridge University Press.Google ScholarGoogle Scholar
  12. Hughes, S. A. 1984. The TMA shallow-water spectrum description and applications. Technical report.Google ScholarGoogle Scholar
  13. Kass, M., and Miller, G. 1990. Rapid, stable fluid dynamics for computer graphics. In ACM Trans. Graph. (Proc of SIGGRAPH), vol. 24, 49--57. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Kitaigorodskii, S., Krasitskii, V., and Zaslavskii, M. 1975. On phillips' theory of equilibrium range in the spectra of wind-generated gravity waves. Physical Oceanography 13, 5, 816--827.Google ScholarGoogle ScholarCross RefCross Ref
  15. Lee, N., Baek, N., and Ryu, K. W. 2008. A real-time method for ocean surface simulation using the tma model. International Journal of Computer Information Systems and Industrial Management Applications (IJCISIM).Google ScholarGoogle Scholar
  16. Longuet-Higgins, M., Cartwright, D., and Smith, N. 1961. Observations of the directional spectrum of sea waves using the motions of a floating buoy. Proceedings of the Conference of Ocean Wave Spectra, 111--132.Google ScholarGoogle Scholar
  17. Mitsuyasu, H. e. a. 1975. Observations of the directional spectrum of ocean waves using a clover-leaf buoy. Journal of Physical Oceanography 5, 750--760.Google ScholarGoogle ScholarCross RefCross Ref
  18. Nielsen, M., and Bridson, R. 2011. Guide shapes for high resolution naturalistic liquid simulation. In ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH), vol. 30, 831--838. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Nielsen, M. B., Söderström, A., and Bridson, R. 2013. Synthesizing waves from animated height fields. ACM Trans. Graph. 32, 1 (Feb.), 2:1--2:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Ochi, M. K. 1998. Ocean Waves. Cambridge University Press.Google ScholarGoogle Scholar
  21. Phillips, O. M. 1958. The equilibrium range in the spectrum of wind-generated ocean waves. Journal of Fluid Mechanics 4, 426--434.Google ScholarGoogle ScholarCross RefCross Ref
  22. Pierson, W. J., and Moskowitz, L. 1964. A proposed spectral form for fully developed windseas based on the similarity theory of s. a. kitaigorodskii. Journal of Geophysical Research 69, 5181--5190.Google ScholarGoogle ScholarCross RefCross Ref
  23. Pierson, W. J. J., Neumann, G., and James, R. W. 1954. Practical Methods for Observing and Forecasting Ocean Waves by means of Wave Spectra and Statistics.Google ScholarGoogle Scholar
  24. Read, P., 2009. Fluids notes. http://www.atm.ox.ac.uk/user/read/fluids/fluidsnotes5.pdf.Google ScholarGoogle Scholar
  25. Stam, J. 2002. A simple fluid solver based on the fft. 43--52. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Stewart, R. 2008. Introduction to Physical Oceanography.Google ScholarGoogle Scholar
  27. Tessendorf, J. 2001. Simulating ocean water. White paper.Google ScholarGoogle Scholar
  28. Thompson, E. F., and Vincent, C. L. 1983. Prediction of wave height in shallow water. Proceedings of Coastal Structures 1983, American Society of Civil Engineers, 1000--1008.Google ScholarGoogle Scholar
  29. Wen, S.-C., Guo, P.-F., and Zhang, D.-C. 1993. Analytically derived wind-wave directional spectrum: Parts 1&2. Journal of Oceanography 49, 131--147.Google ScholarGoogle ScholarCross RefCross Ref
  30. Young, I. 1999. Wind Generated Ocean Waves. Elsevier.Google ScholarGoogle Scholar

Index Terms

  1. Empirical directional wave spectra for computer graphics

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader