skip to main content
10.1145/2801040.2801053acmotherconferencesArticle/Chapter ViewAbstractPublication PagesvinciConference Proceedingsconference-collections
research-article

Consistently GPU-Accelerated Graph Visualization

Published: 24 August 2015 Publication History

Abstract

Graph visualization is essential for the analysis of networks and relational data sets. Often, most of the effort is expended on computing sophisticated layouts of the visual representation of the graph. Even though this is increasingly accelerated by use of graphics processing units (GPUs), the rendering is often considered as circumstantial. In this paper, we present a coherent approach to graph visualization that utilizes all features of modern GPUs. We describe specialized data structures and our GPU-centric pipeline for computing and rendering a layout, while enabling steering and interaction. We evaluate technical aspects of our approach as well as its applicability to huge real-world graphs.

References

[1]
D. Archambault, J. Abello, J. Kennedy, S. Kobourov, K.-L. Ma, S. Miksch, C. Muelder, and A. C. Telea. Temporal Multivariate Networks. In Multivariate Network Visualization, number 8380 in Lecture Notes in Computer Science, pages 151--174. Springer International Publishing, 2014.
[2]
D. Auber. Tulip - A Huge Graph Visualization Framework. In Graph Drawing Software, Mathematics and Visualization, pages 105--126. Springer Berlin Heidelberg, 2004.
[3]
M. Bastian, S. Heymann, and M. Jacomy. Gephi: An open source software for exploring and manipulating networks. In Proceedings of the Third International AAAI Conference on Weblogs and Social Media, pages 361--362, 2009.
[4]
G. D. Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall, 1998.
[5]
F. C. Bernstein, T. F. Koetzle, G. J. Williams, E. F. Meyer, Jr, M. D. Brice, J. R. Rodgers, O. Kennard, T. Shimanouchi, and M. Tasumi. The Protein Data Bank: a computer-based archival file for macromolecular structures. Journal of molecular biology, 112(3):535--542, 1977.
[6]
W. Cui, H. Zhou, H. Qu, P. C. Wong, and X. Li. Geometry-Based Edge Clustering for Graph Visualization. IEEE Transactions on Visualization and Computer Graphics, 14(6):1277--1284, 2008.
[7]
N. Elmqvist, T.-N. Do, H. Goodell, N. Henry, and J. Fekete. ZAME: Interactive Large-Scale Graph Visualization. In 2008 IEEE Pacific Visualization Symposium, pages 215--222, 2008.
[8]
O. Ersoy, C. Hurter, F. Paulovich, G. Cantareiro, and A. Telea. Skeleton-Based Edge Bundling for Graph Visualization. IEEE Transactions on Visualization and Computer Graphics, 17(12):2364--2373, 2011.
[9]
Y. Frishman and A. Tal. Multi-Level Graph Layout on the GPU. IEEE Transactions on Visualization and Computer Graphics, 13(6):1310--1319, 2007.
[10]
Y. Frishman and A. Tal. Uncluttering Graph Layouts Using Anisotropic Diffusion and Mass Transport. IEEE Transactions on Visualization and Computer Graphics, 15(5):777--788, 2009.
[11]
T. M. J. Fruchterman and E. M. Reingold. Graph drawing by force-directed placement. Software: Practice and Experience, 21(11):1129--1164, 1991.
[12]
E. Gansner, Y. Hu, S. North, and C. Scheidegger. Multilevel agglomerative edge bundling for visualizing large graphs. In 2011 IEEE Pacific Visualization Symposium, pages 187--194, 2011.
[13]
E. R. Gansner and Y. Hu. Efficient Node Overlap Removal Using a Proximity Stress Model. In Graph Drawing, number 5417 in Lecture Notes in Computer Science, pages 206--217. Springer Berlin Heidelberg, 2009.
[14]
E. R. Gansner, Y. Koren, and S. North. Graph Drawing by Stress Majorization. In Graph Drawing, number 3383 in Lecture Notes in Computer Science, pages 239--250. Springer Berlin Heidelberg, 2005.
[15]
A. Godiyal, J. Hoberock, M. Garland, and J. C. Hart. Rapid Multipole Graph Drawing on the GPU. In Graph Drawing, 90--101. Springer Berlin Heidelberg, 2009.
[16]
D. Harel and Y. Koren. A fast multi-scale method for drawing large graphs. In Proceedings of the working conference on Advanced visual interfaces, pages 282--285, 2000.
[17]
N. Henry, J.-D. Fekete, and M. J. McGuffin. NodeTrix: a Hybrid Visualization of Social Networks. IEEE Transactions on Visualization and Computer Graphics, 13(6):1302--1309, 2007.
[18]
D. Holten, P. Isenberg, J. van Wijk, and J. Fekete. An extended evaluation of the readability of tapered, animated, and textured directed-edge representations in node-link graphs. In 2011 IEEE Pacific Visualization Symposium, pages 195--202, 2011.
[19]
D. Holten and J. J. van Wijk. Force-Directed Edge Bundling for Graph Visualization. Computer Graphics Forum, 28(3):983--990, 2009.
[20]
C. Hurter, O. Ersoy, and A. Telea. Graph Bundling by Kernel Density Estimation. Computer Graphics Forum, 31:865--874, 2012.
[21]
S. Ingram, T. Munzner, and M. Olano. Glimmer: Multilevel MDS on the GPU. IEEE Transactions on Visualization and Computer Graphics, 15(2):249--261, 2009.
[22]
T. Kamada and S. Kawai. An algorithm for drawing general undirected graphs. Information Processing Letters, 31(1):7--15, 1989.
[23]
M. Khoury, Y. Hu, S. Krishnan, and C. Scheidegger. Drawing Large Graphs by Low-Rank Stress Majorization. Computer Graphics Forum, 31(3pt1):975--984, 2012.
[24]
Y. Koren, L. Carmel, and D. Harel. ACE: a fast multiscale eigenvectors computation for drawing huge graphs. In IEEE Symposium on Information Visualization, pages 137--144, 2002.
[25]
Y. Koren, L. Carmel, and D. Harel. Drawing Huge Graphs by Algebraic Multigrid Optimization. Multiscale Modeling & Simulation, 1(4):645--673, 2003.
[26]
J. Leskovec, L. A. Adamic, and B. A. Huberman. The dynamics of viral marketing. ACM Transactions on the Web, 1(1), 2007.
[27]
H. C. Purchase, R. F. Cohen, and M. James. Validating Graph Drawing Aesthetics. In Proceedings of the Symposium on Graph Drawing, GD '95, pages 435--446. Springer, 1996.
[28]
E. W. Sayers, T. Barrett, D. A. Benson, S. H. Bryant, K. Canese, V. Chetvernin, D. M. Church, M. DiCuccio, R. Edgar, S. Federhen, M. Feolo, L. Y. Geer, W. Helmberg, Y. Kapustin, D. Landsman, D. J. Lipman, T. L. Madden, D. R. Maglott, V. Miller, I. Mizrachi, J. Ostell, K. D. Pruitt, G. D. Schuler, E. Sequeira, S. T. Sherry, M. Shumway, K. Sirotkin, A. Souvorov, G. Starchenko, T. A. Tatusova, L. Wagner, E. Yaschenko, and J. Ye. Database resources of the National Center for Biotechnology Information. Nucleic acids research, 37(Database issue):D5--15, 2009.
[29]
The UniProt Consortium. Activities at the Universal Protein Resource (UniProt). Nucleic Acids Research, 42(D1):D191--D198, 2013.
[30]
U.S. Census Bureau. County-to-county migration flow files.
[31]
C. Ware, H. Purchase, L. Colpoys, and M. McGill. Cognitive Measurements of Graph Aesthetics. Information Visualization, 1(2):103--110, 2002.
[32]
M. Zinsmaier, U. Brandes, O. Deussen, and H. Strobelt. Interactive Level-of-Detail Rendering of Large Graphs. IEEE Transactions on Visualization and Computer Graphics, 18(12):2486--2495, 2012.

Cited By

View all
  • (2020)Accelerating Force-Directed Graph Drawing with RT Cores2020 IEEE Visualization Conference (VIS)10.1109/VIS47514.2020.00026(96-100)Online publication date: Oct-2020
  • (2020)Accelerating Force-directed Graph Layout with Processing-in-Memory Architecture2020 IEEE 27th International Conference on High Performance Computing, Data, and Analytics (HiPC)10.1109/HiPC50609.2020.00041(271-282)Online publication date: Dec-2020
  • (2019)AtlasProceedings of the 24th International Conference on Intelligent User Interfaces10.1145/3301275.3302275(165-176)Online publication date: 17-Mar-2019
  • Show More Cited By
  1. Consistently GPU-Accelerated Graph Visualization

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    VINCI '15: Proceedings of the 8th International Symposium on Visual Information Communication and Interaction
    August 2015
    185 pages
    ISBN:9781450334822
    DOI:10.1145/2801040
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 24 August 2015

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. GPU acceleration
    2. graph visualization
    3. huge graphs

    Qualifiers

    • Research-article
    • Research
    • Refereed limited

    Funding Sources

    Conference

    VINCI '15

    Acceptance Rates

    VINCI '15 Paper Acceptance Rate 12 of 32 submissions, 38%;
    Overall Acceptance Rate 71 of 193 submissions, 37%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)3
    • Downloads (Last 6 weeks)1
    Reflects downloads up to 05 Mar 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2020)Accelerating Force-Directed Graph Drawing with RT Cores2020 IEEE Visualization Conference (VIS)10.1109/VIS47514.2020.00026(96-100)Online publication date: Oct-2020
    • (2020)Accelerating Force-directed Graph Layout with Processing-in-Memory Architecture2020 IEEE 27th International Conference on High Performance Computing, Data, and Analytics (HiPC)10.1109/HiPC50609.2020.00041(271-282)Online publication date: Dec-2020
    • (2019)AtlasProceedings of the 24th International Conference on Intelligent User Interfaces10.1145/3301275.3302275(165-176)Online publication date: 17-Mar-2019
    • (2018)Resource provisioning for memory intensive graph processingProceedings of the Australasian Computer Science Week Multiconference10.1145/3167918.3167948(1-7)Online publication date: 29-Jan-2018

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media