skip to main content
10.1145/2801040.2801054acmotherconferencesArticle/Chapter ViewAbstractPublication PagesvinciConference Proceedingsconference-collections
research-article

Predictive Visual Analytics using Topic Composition

Published: 24 August 2015 Publication History

Abstract

Digital big data provide the vast potential of increasing effectiveness and efficiency for decision making. Since the volume of the data is enormous, the data analysis requires large amount of time and effort. It is more problematic when predictive analysis is necessary for futuristic decision making. In order for predictive analysis, there have been many studies to forecast future trends spatiotemporally. However, most of studies provide just future tendency per event using graphs or maps without contextual compositive analysis. In this paper, we present a predictive visual analytics system to provide predictive event patterns. We infer the future event evolution by combining contextually similar cases occurring in the past. We utilize social media data to detect interesting abnormal events and match the detected abnormal events within the past news media data in order to retrieve similar event patterns. Then, we extract future event patterns through compositing contextual relationship among topics included in the similar past patterns. In order to evaluate our VA system, we demonstrate two use cases in this paper and validate our system with possible predictive story lines.

References

[1]
S. Asur and B. A. Huberman. Predicting the future with social media. In Proceedings of the 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology - Volume 01, pages 492--499, 2010.
[2]
H. Becker. Identification and Characterization of Events in Social Media. PhD thesis, Columbia University, 2011.
[3]
H. Becker, M. Naaman, and L. Gravano. Learning similarity metrics for event identification in social media. In Proceedings of the Third ACM International Conference on Web Search and Data Mining, pages 291--300, 2010.
[4]
D. Best, J. Bruce, S. Dowson, O. Love, and L. McGrath. Web-based visual analytics for social media. In Proceedings of the Workshop on Social Media Visualization(SocMedVis) at ICWSM, 2012.
[5]
M. Bögl, W. Aigner, P. Filzmoser, T. Gschwandtner, T. Lammarsch, S. Miksch, and A. Rind. Visual analytics methods to guide diagnostics for time series model predictions. In Proceedings of the IEEE VIS 2014 Workshop Visualization for Predictive Analytics, 2014.
[6]
J. Bollen, H. Mao, and X. Zeng. Twitter mood predicts the stock market. Journal of Computational Science, 2011.
[7]
H. Bosch, D. Thom, F. Heimerl, E. Puttmann, S. Koch, R. Krãijger, M. Wãűrner, and T. Ertl. Scatterblogs2: Real-time monitoring of microblog messages through user-guided filtering. IEEE Transactions on Visualization and Computer Graphics, 19(12):2022--2031, 2013.
[8]
C. Bryan, K.-L. Ma, and S. Mniszewski. Integrating predictive visualization with the epidemic disease simulation system (episims). In Proceedings of the IEEE VIS 2014 Workshop Visualization for Predictive Analytics, 2014.
[9]
J. Chae, D. Thom, H. Bosch, Y. Jang, R. Maciejewski, D. S. Ebert, and T. Ertl. Spatiotemporal social media analytics for abnormal event detection and examination using seasonal-trend decomposition. In 2012 IEEE Conference on Visual Analytics Science and Technology, VAST, pages 143--152, 2012.
[10]
J. Chae, D. Thom, Y. Jang, S. Y. Kim, T. Ertl, and D. S. Ebert. Public behavior response analysis in disaster events utilizing visual analytics of microblog data. Computers & Graphics, 38:51--60, 2014.
[11]
R. B. Cleveland, W. S. Cleveland, J. E. McRae, and I. Terpenning. STL: A seasonal-trend decomposition procedure based on loess (with discussion). Journal of Official Statistics, 6:3--73, 1990.
[12]
M. El Assady, W. Jentner, M. Stein, F. Fischer, T. Schreck, and D. A. Keim. Predictive Visual Analytics Approaches for Movie Ratings and Discussion of Open Research Challenges. In Proceedings of the IEEE VIS 2014 Workshop Visualization for Predictive Analytics, 2014.
[13]
N. S. Glance, M. Hurst, and T. Tomokiyo. Blogpulse: Automated trend discovery for weblogs. In In WWW 2004 Workshop on the Weblogging Ecosystem, 2004.
[14]
M. C. Hao, H. Janetzko, S. Mittelstädt, W. Hill, U. Dayal, D. A. Keim, M. Marwah, and R. K. Sharma. A visual analytics approach for peak-preserving prediction of large seasonal time series. Computer Graphics Forum, 30(3):691--700, 2011.
[15]
S. Havre, P. Whitney, and L. Nowell. Themeriver: Visualizing thematic changes in large document collections. IEEE Transactions on Visualization and Computer Graphics, 8:9--20, 2002.
[16]
T. Kraft, D. X. Wang, J. Delawder, W. Dou, Y. Li, and W. Ribarsky. Less after-the-fact: Investigative visual analysis of events from streaming twitter. In IEEE Symposium on Large-Scale Data Analysis and Visualization, LDAV, pages 95--103, 2013.
[17]
M. Krstajic, E. Bertini, and D. A. Keim. Cloudlines: Compact display of event episodes in multiple time-series. IEEE Transactions on Visualization and Computer Graphics, 17(12):2432--2439, 2011.
[18]
M. Krstajic, M. Najm-Araghi, F. Mansmann, and D. A. Keim. Story tracker: Incremental visual text analytics of news story development. Information Visualization, 12(3-4):308--323, 2013.
[19]
R. Lee and K. Sumiya. Measuring geographical regularities of crowd behaviors for twitter-based geo-social event detection. In Proceedings of the 2Nd ACM SIGSPATIAL International Workshop on Location Based Social Networks, LBSN '10, pages 1--10, 2010.
[20]
Y. Lu, R. Kruger, D. Thom, F. Wang, S. Koch, T. Ertl, and R. Maciejewski. Integrating predictive analytics and social media. In Proc. Visual Analytics Science and Technology (VAST), 2014 IEEE Conference on, pages 193--202, 2014.
[21]
D. Luo, J. Yang, M. Krstajic, W. Ribarsky, and D. A. Keim. EventRiver: Visually Exploring Text Collections with Temporal References. IEEE Transactions on Visualization and Computer Graphics, 18(1):93--105, 2012.
[22]
A. M. MacEachren, A. R. Jaiswal, A. C. Robinson, S. Pezanowski, A. Savelyev, P. Mitra, X. Zhang, and J. Blanford. Senseplace2: Geotwitter analytics support for situational awareness. In IEEE VAST, pages 181--190. IEEE Computer Society, 2011.
[23]
R. Maciejewski, R. Hafen, S. Rudolph, S. Larew, M. Mitchell, W. Cleveland, and D. Ebert. Forecasting hotspots - a predictive analytics approach. IEEE Transactions on Visualization and Computer Graphics, 17(4):440--453, April 2011.
[24]
A. Malik, R. Maciejewski, S. Towers, S. McCullough, and D. Ebert. Proactive spatiotemporal resource allocation and predictive visual analytics for community policing and law enforcement. IEEE Transactions on Visualization and Computer Graphics, 20(12):1863--1872, Dec 2014.
[25]
A. K. McCallum. MALLET: A machine learning for language toolkit. http://mallet.cs.umass.edu, 2002.
[26]
B. Meyer, K. Bryan, Y. Santos, and B. Kim. Twitterreporter: Breaking news detection and visualization through the geo-tagged twitter network. In Proceedings of the ISCA 26th International Conference on Computers and Their Applications, pages 84--89, 2011.
[27]
M. F. Porter. An algorithm for suffix stripping. In K. Sparck Jones and P. Willett, editors, Readings in Information Retrieval, pages 313--316. Morgan Kaufmann Publishers Inc., 1997.
[28]
T. Sakaki, M. Okazaki, and Y. Matsuo. Earthquake shakes twitter users: Real-time event detection by social sensors. In Proceedings of the 19th International Conference on World Wide Web, WWW '10, pages 851--860, 2010.
[29]
E. T. K. Sang and J. Bos. Predicting the 2011 dutch senate election results with twitter. In Proceedings of the Workshop on Semantic Analysis in Social Media, pages 53--60, 2012.
[30]
H. Sayyadi, M. Hurst, and A. Maykov. Event detection and tracking in social streams. In In Proceedings of the International Conference on Weblogs and Social Media, 2009.
[31]
T. Takahashi, R. Tomioka, and K. Yamanishi. Discovering emerging topics in social streams via link-anomaly detection. IEEE Trans. Knowl. Data Eng., 26(1):120--130, 2014.
[32]
T. Terpstra, A. de Vries, G. Paradies, and R. Stronkman. Towards a realtime twitter analysis during crises for operational crisis management. In Proceeding of 9th International Conference on Information Systems for Crisis Response and Management (ISCRAM), 2012.
[33]
A. Tumasjan, T. Sprenger, P. Sandner, and I. Welpe. Predicting elections with twitter: What 140 characters reveal about political sentiment. In Proceedings of the Fourth International AAAI Conference on Weblogs and Social Media, pages 178--185, 2010.
[34]
S. Vieweg, A. L. Hughes, K. Starbird, and L. Palen. Microblogging during two natural hazards events: What twitter may contribute to situational awareness. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI '10, pages 1079--1088, New York, NY, USA, 2010. ACM.
[35]
F. Wanner, A. Stoffel, D. Jäckle, B. C. Kwon, A. Weiler, and D. A. Keim. State-of-the-Art Report of Visual Analysis for Event Detection in Text Data Streams. In R. Borgo, R. Maciejewski, and I. Viola, editors, EuroVis - STARs, pages 125--139, Swansea, UK, 2014.
[36]
K. Watanabe, M. Ochi, M. Okabe, and R. Onai. Jasmine: A real-time local-event detection system based on geolocation information propagated to microblogs. In Proceedings of the 20th ACM International Conference on Information and Knowledge Management, pages 2541--2544, 2011.
[37]
Y. Wu, F. Wei, S. Liu, N. Au, W. Cui, H. Zhou, and H. Qu. Opinionseer: Interactive visualization of hotel customer feedback. IEEE Transactions on Visualization and Computer Graphics, 16(6):1109--1118, Nov. 2010.
[38]
Q. Zhao and P. Mitra. Event Detection and Visualization for Social Text Streams. In International Conference on Weblogs and Social Media (ICWSM'2007), Boulder, Colorado, USA, Mar. 2007.
[39]
W. X. Zhao, J. Jiang, J. Weng, J. He, E.-P. Lim, H. Yan, and X. Li. Comparing twitter and traditional media using topic models. In Proceedings of the 33rd European Conference on Advances in Information Retrieval, pages 338--349, 2011.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
VINCI '15: Proceedings of the 8th International Symposium on Visual Information Communication and Interaction
August 2015
185 pages
ISBN:9781450334822
DOI:10.1145/2801040
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 24 August 2015

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Abnormal event
  2. Future story lines
  3. Predictive Analysis
  4. Social media data analysis

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Funding Sources

Conference

VINCI '15

Acceptance Rates

VINCI '15 Paper Acceptance Rate 12 of 32 submissions, 38%;
Overall Acceptance Rate 71 of 193 submissions, 37%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)3
  • Downloads (Last 6 weeks)1
Reflects downloads up to 05 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2020)WeSeer: Visual Analysis for Better Information Cascade Prediction of WeChat ArticlesIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2018.286777626:2(1399-1412)Online publication date: 1-Feb-2020
  • (2020) SNAP Intelligent Data Analysis10.1002/9781119544487.ch15(307-331)Online publication date: 2-Jun-2020
  • (2018)Predictive visual analytics of event evolution for user-created contextJournal of Visualization10.1007/s12650-016-0373-720:3(471-486)Online publication date: 24-Dec-2018
  • (2018)Recent progress and trends in predictive visual analyticsFrontiers of Computer Science: Selected Publications from Chinese Universities10.1007/s11704-016-6028-y11:2(192-207)Online publication date: 15-Dec-2018
  • (2018)NUPT ST-Data Miner: An Spatio-Temporal Data Analysis and Visualization SystemInformation Science and Applications 201810.1007/978-981-13-1056-0_5(41-51)Online publication date: 24-Jul-2018
  • (2017)Social Media Visual AnalyticsComputer Graphics Forum10.1111/cgf.1321136:3(563-587)Online publication date: 1-Jun-2017
  • (2016)A Hybrid Approach for Event Social Influence VisualizationProceedings of the 9th International Symposium on Visual Information Communication and Interaction10.1145/2968220.2968246(117-121)Online publication date: 24-Sep-2016

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media