skip to main content
10.1145/2801073.2801078acmconferencesArticle/Chapter ViewAbstractPublication PagesmobicomConference Proceedingsconference-collections
research-article

Visible Light Knows Who You Are

Published: 11 September 2015 Publication History

Abstract

We examine the feasibility of human identification using purely the ubiquitous visible light. Empowered by the Visible Light Communication (VLC), the identification system consists of VLC-enabled LED lights on the ceiling emitting light beacons, and photodiodes on the floor capturing a continuous stream of shadow maps each corresponding to an LED light. We leverage these shadow maps to localize a user's key boy joints in the 3D space and recognize the user based on the estimated body parameters (e.g., shoulder width, arm length). Preliminary results with 10 participants show 80\% success rate, i.e., correctly identifying 8 participants out of 10. The mean error of the body parameter estimation is 0.03 m. To extend the system to diverse practical settings, we discuss the our plan of incorporating advanced behavioral features to enhance the identification accuracy and robustness.

References

[1]
Adib, F., Kabelac, Z., Katabi, D., and Miller, R. C. 3D Tracking via Body Radio Reflections. In Proc. of NSDI (2014).
[2]
Ashok, A., et al. Challenge: Mobile optical networks through visual MIMO. In Proc. of MobiCom (2010).
[3]
Bobick, A. F., and Johnson, A. Y. Gait recognition using static, activity-specific parameters. In Proc. of CVPR (2001), vol. 1, IEEE, pp. I--423.
[4]
Cornelius, C., Peterson, R., Skinner, J., Halter, R., and Kotz, D. A wearable system that knows who wears it. In Proc. of MobiSys (2014), ACM, pp. 55--67.
[5]
De Sanctis, M., Cianca, E., Di Domenico, S., Provenziani, D., Bianchi, G., and Ruggieri, M. WIBECAM: Device Free Human Activity Recognition Through WiFi Beacon-Enabled Camera. In Proc. of WPA (2015), ACM, pp. 7--12.
[6]
Dietz, P., Yerazunis, W., and Leigh, D. Very low-cost sensing and communication using bidirectional LEDs. In Proc. of UbiComp. 2003.
[7]
Fang, J.-S., Hao, Q., Brady, D. J., Guenther, B. D., and Hsu, K. Y. Real-time human identification using a pyroelectric infrared detector array and hidden markov models. Optics express 14, 15 (2006), 6643--6658.
[8]
Hao, T., Zhou, R., and Xing, G. COBRA: Color barcode streaming for smartphone systems. In Proc. of MobiSys (2012).
[9]
Hayashi, E., Maas, M., and Hong, J. I. Wave to me: user identification using body lengths and natural gestures. In Proc. of CHI (2014), ACM, pp. 3453--3462.
[10]
Hu, W., Gu, H., and Pu, Q. LightSync: Unsynchronized visual communication over screen-camera links. In Proc. of MobiCom (2013).
[11]
Hu, W., Mao, J., Huang, Z., Xue, Y., She, J., Bian, K., and Shen, G. Strata: Layered Coding for Scalable Visual Communication. In Proc. of MobiCom (2014).
[12]
Iwashita, Y., and Stoica, A. Gait recognition using shadow analysis. In Symposium on BLISS (2009), IEEE, pp. 26--31.
[13]
Kale, A., RoyChowdhury, A. K., and Chellappa, R. Fusion of gait and face for human identification. In Proc. of ICASSP (2004), vol. 5, IEEE, pp. V--901.
[14]
Katabi, F. A. Z. K. D. Multi-Person Localization via RF Body Reflections. In Proc. of NSDI (2015).
[15]
Kim, H.-S., et al. An indoor visible light communication positioning system using a RF carrier allocation technique. Journal of Lightwave Technology 31, 1 (2013), 134--144.
[16]
Komine, T., and Nakagawa, M. Fundamental analysis for visible-light communication system using LED lights. IEEE Transactions on Consumer Electronics 50, 1 (2004), 100--107.
[17]
Kuo, Y.-S., Pannuto, P., Hsiao, K.-J., and Dutta, P. Luxapose: Indoor positioning with mobile phones and visible light. In Proc. of MobiCom (2014), ACM, pp. 447--458.
[18]
Li, L., Hu, P., Peng, C., Shen, G., and Zhao, F. Epsilon: A visible light based positioning system. In Proc. of NSDI (2014).
[19]
Li, T., An, C., Tian, Z., Campbell, A. T., and Zhou, X. Human sensing using visible light communication. In Proc. of MobiCom (2015).
[20]
Lu, H., Huang, J., Saha, T., and Nachman, L. Unobtrusive gait verification for mobile phones. In Proc. of ISWC (2014), ACM, pp. 91--98.
[21]
Perli, S. D., Ahmed, N., and Katabi, D. PixNet: Interference-free wireless links using LCD-camera pairs. In Proc. of MobiCom (2010).
[22]
Post, E. R., Orth, M., Russo, P. R., and Gershenfeld, N. E-broidery: Design and fabrication of textile-based computing. IBM Systems Journal 39, 3.4 (2000), 840--860.
[23]
Pu, Q., Gupta, S., Gollakota, S., and Patel, S. Whole-home gesture recognition using wireless signals. In Proc. of MobiCom (2013).
[24]
Sbrlea, D., Burke, M. G., Guarnieri, S., Pistoia, M., and Sarkar, V. Automatic detection of inter-application permission leaks in android applications. IBM Journal of Research and Development 57, 6 (2013), 10--1.
[25]
Schmid, S., Corbellini, G., Mangold, S., and Gross, T. R. LED-to-LED visible light communication networks. In Proc. of MobiHoc (2013).
[26]
Shi, W., Yang, J., Jiang, Y., Yang, F., and Xiong, Y. Senguard: Passive user identification on smartphones using multiple sensors. In Proc. of WiMob (2011), IEEE, pp. 141--148.
[27]
Srinivasan, V., Stankovic, J., and Whitehouse, K. Using height sensors for biometric identification in multi-resident homes. In Pervasive Computing. Springer, 2010, pp. 337--354.
[28]
Tsonev, D., et al. A 3-Gb/s Single-LED OFDM-based Wireless VLC Link Using a Gallium Nitride μLED. Photonics Technology Letters, IEEE PP, 99 (2014), 1--1.
[29]
Vu, T., Baid, A., Gao, S., Gruteser, M., Howard, R., Lindqvist, J., Spasojevic, P., and Walling, J. Distinguishing users with capacitive touch communication. In Proc. of MobiCom (2012), ACM, pp. 197--208.
[30]
Wang, A., Ma, S., Hu, C., Huai, J., Peng, C., and Shen, G. Enhancing Reliability to Boost the Throughput over Screen-camera Links. In Proc. of MobiCom (2014).
[31]
Wang, H., Bao, X., Roy Choudhury, R., and Nelakuditi, S. Visually fingerprinting humans without face recognition. In Proc. of MobiSys (2015), ACM, pp. 345--358.
[32]
Wang, L., Ning, H., Tan, T., and Hu, W. Fusion of static and dynamic body biometrics for gait recognition. Circuits and Systems for Video Technology, IEEE Transactions on 14, 2 (2004), 149--158.
[33]
Wang, L., Tan, T., Hu, W., and Ning, H. Automatic gait recognition based on statistical shape analysis. Image Processing, IEEE Transactions on 12, 9 (2003), 1120--1131.
[34]
Wang, Y., Liu, J., Chen, Y., Gruteser, M., Yang, J., and Liu, H. E-eyes: Device-free Location-oriented Activity Identification Using Fine-grained WiFi Signatures. In Proc. of MobiCom (2014).
[35]
Weinberg, Z., Chen, E. Y., Jayaraman, P. R., and Jackson, C. I still know what you visited last summer: Leaking browsing history via user interaction and side channel attacks. In Proc. of IEEE Symposium on Security and Privacy (2011).
[36]
Yun, J., and Lee, S.-S. Human movement detection and identification using pyroelectric infrared sensors. Sensors 14, 5 (2014), 8057--8081.
[37]
Zhang, W., and Kavehrad, M. Comparison of VLC-based indoor positioning techniques. In Proc. of SPIE (2013).
[38]
Zhou, X., and Campbell, A. Visible Light Networking and Sensing. In Proc. of HotWireless (2014).

Cited By

View all
  • (2025)Enable Practical Long-Range Multi-Target Backscatter SensingIEEE Transactions on Mobile Computing10.1109/TMC.2024.348013724:3(1437-1452)Online publication date: 1-Mar-2025
  • (2024)LoMu: Enable Long-Range Multi-Target Backscatter Sensing for Low-Cost TagsIEEE INFOCOM 2024 - IEEE Conference on Computer Communications10.1109/INFOCOM52122.2024.10621272(2069-2078)Online publication date: 20-May-2024
  • (2023)Recognizing Hand Gestures Using Solar CellsIEEE Transactions on Mobile Computing10.1109/TMC.2022.314814322:7(4223-4235)Online publication date: 1-Jul-2023
  • Show More Cited By

Index Terms

  1. Visible Light Knows Who You Are

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      VLCS '15: Proceedings of the 2nd International Workshop on Visible Light Communications Systems
      September 2015
      52 pages
      ISBN:9781450337021
      DOI:10.1145/2801073
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Sponsors

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 11 September 2015

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. human identification
      2. visible light communication

      Qualifiers

      • Research-article

      Funding Sources

      • NSF

      Conference

      MobiCom'15
      Sponsor:

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)14
      • Downloads (Last 6 weeks)1
      Reflects downloads up to 17 Feb 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2025)Enable Practical Long-Range Multi-Target Backscatter SensingIEEE Transactions on Mobile Computing10.1109/TMC.2024.348013724:3(1437-1452)Online publication date: 1-Mar-2025
      • (2024)LoMu: Enable Long-Range Multi-Target Backscatter Sensing for Low-Cost TagsIEEE INFOCOM 2024 - IEEE Conference on Computer Communications10.1109/INFOCOM52122.2024.10621272(2069-2078)Online publication date: 20-May-2024
      • (2023)Recognizing Hand Gestures Using Solar CellsIEEE Transactions on Mobile Computing10.1109/TMC.2022.314814322:7(4223-4235)Online publication date: 1-Jul-2023
      • (2023)Integrated Sensing, Lighting and Communication Based on Visible Light Communication: A ReviewDigital Signal Processing10.1016/j.dsp.2023.104340(104340)Online publication date: Dec-2023
      • (2022)The Visual Accelerometer: A High-fidelity Optic-to- Inertial Transformation Framework for Wearable Health Computing2022 IEEE 10th International Conference on Healthcare Informatics (ICHI)10.1109/ICHI54592.2022.00053(319-329)Online publication date: Jun-2022
      • (2021)Indoor Visible Light Applications for Communication, Positioning, and SecurityWireless Communications and Mobile Computing10.1155/2021/17306552021(1-10)Online publication date: 8-Aug-2021
      • (2021)ShrimpProceedings of the 27th Annual International Conference on Mobile Computing and Networking10.1145/3447993.3448616(134-146)Online publication date: 11-Oct-2021
      • (2020)DeepMVProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies10.1145/33809804:1(1-26)Online publication date: 18-Mar-2020
      • (2020)Non-Contact Vital Signs Monitoring Through Visible Light SensingIEEE Sensors Journal10.1109/JSEN.2019.296019420:7(3859-3870)Online publication date: 1-Apr-2020
      • (2019)SolarGestThe 25th Annual International Conference on Mobile Computing and Networking10.1145/3300061.3300129(1-15)Online publication date: 5-Aug-2019
      • Show More Cited By

      View Options

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media