skip to main content
research-article

Data-Aware Vaccine Allocation Over Large Networks

Published:12 October 2015Publication History
Skip Abstract Section

Abstract

Given a graph, like a social/computer network or the blogosphere, in which an infection (or meme or virus) has been spreading for some time, how to select the k best nodes for immunization/quarantining immediately? Most previous works for controlling propagation (say via immunization) have concentrated on developing strategies for vaccination preemptively before the start of the epidemic. While very useful to provide insights in to which baseline policies can best control an infection, they may not be ideal to make real-time decisions as the infection is progressing.

In this paper, we study how to immunize healthy nodes, in the presence of already infected nodes. Efficient algorithms for such a problem can help public-health experts make more informed choices, tailoring their decisions to the actual distribution of the epidemic on the ground. First we formulate the Data-Aware Vaccination problem, and prove it is NP-hard and also that it is hard to approximate. Secondly, we propose three effective polynomial-time heuristics DAVA, DAVA-prune and DAVA-fast, of varying degrees of efficiency and performance. Finally, we also demonstrate the scalability and effectiveness of our algorithms through extensive experiments on multiple real networks including large epidemiology datasets (containing millions of interactions). Our algorithms show substantial gains of up to ten times more healthy nodes at the end against many other intuitive and nontrivial competitors.

References

  1. Roy M. Anderson and Robert M. May. 1991. Infectious Diseases of Humans. Oxford University Press, Oxford.Google ScholarGoogle Scholar
  2. James Aspnes, Kevin Chang, and Aleksandr Yampolskiy. 2005. Inoculation strategies for victims of viruses and the sum-of-squares partition problem. In Proceedings of the SODA, 43--52. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Norman Bailey. 1975. The Mathematical Theory of Infectious Diseases and its Applications. Griffin, London.Google ScholarGoogle Scholar
  4. Christopher L. Barrett, Harry B. Hunt III, Madhav V. Marathe, S. S. Ravi, Daniel J. Rosenkrantz, Richard Edwin Stearns, and Mayur Thakur. 2008. Errata for the paper “Predecessor existence problems for finite discrete dynamical systems” {TCS 386 (1-2) (2007) 3-37}. Theor. Comput. Sci. 395, 1, 132--133. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Sushil Bikhchandani, David Hirshleifer, and Ivo Welch. 1992. A theory of fads, fashion, custom, and cultural change in informational cascades. J. Pol. Economy 100, 5 (October 1992), 992--1026.Google ScholarGoogle ScholarCross RefCross Ref
  6. Linda Briesemeister, Patric Lincoln, and Philip Porras. 2003. Epidemic profiles and defense of scale-free networks. In Proceedings of the WORM 2003 (October 27 2003). 67--75. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Adam L. Buchsbaum, Haim Kaplan, Anne Rogers, and Jeffery R. Westbrook. 1998. A new, simpler linear-time dominators algorithm. ACM Trans. Program. Lang. Syst. 20, 6 (November 1998), 1265--1296. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Po-An Chen, Mary David, and David Kempe. 2010a. Better vaccination strategies for better people. In Proceedings of the 11th ACM Conference on Electronic Commerce (EC’10). ACM, New York, NY, USA, 179--188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. W. Chen, C. Wang, and Y. Wang. 2010b. Scalable influence maximization for prevalent viral marketing in large-scale social networks. In Proceedings of the KDD. 1029--1038. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Reuven Cohen, Shlomo Havlin, and Daniel ben Avraham. 2003. Efficient immunization strategies for computer networks and populations. Phys. Rev. Lett. 91, 24 (Dec. 2003), 1--4.Google ScholarGoogle ScholarCross RefCross Ref
  11. Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. 1989. An efficient method of computing static single assignment form. In Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. ACM, 25--35. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. J. Dushoff, J. B. Plotkin, C. Viboud, L. Simonsen, M. Miller, M. Loeb, and D. J. Earn. 2007. Vaccinating to protect a vulnerable subpopulation. PLoS Med. 4, 5, 0921--0927.Google ScholarGoogle ScholarCross RefCross Ref
  13. Stephen Eubank, Hasan Guclu, V. S. Anil Kumar, Madhav V. Marathe, Aravind Srinivasan, Zoltan Toroczkai, and Nan Wang. 2004. Modelling disease outbreaks in realistic urban social networks. Nature 429, 6988 (May 2004), 180--184.Google ScholarGoogle ScholarCross RefCross Ref
  14. N. M. Ferguson, D. A. Cummings, C. Fraser, J. C. Cajka, P. C. Cooley, and D. S. Burke. 2006. Strategies for mitigating an influenza pandemic. Nature 442, 7101, 448--452.Google ScholarGoogle Scholar
  15. L. C. Freeman. 1977. A set of measures of centrality based on betweenness. Sociometry, 35--41.Google ScholarGoogle Scholar
  16. Ayalvadi Ganesh, Laurent Massoulié, and Don Towsley. 2005. The effect of network topology on the spread of epidemics. In IEEE INFOCOM. IEEE Computer Society Press, Los Alamitos, CA, 1455--1466.Google ScholarGoogle Scholar
  17. Samuel Goldberg. 1986. Probability: An Introduction. Courier Dover Publications, NY, USA.Google ScholarGoogle Scholar
  18. Jacob Goldenberg, Barak Libai, and Eitan Muller. 2001. Talk of the network: A complex systems look at the underlying process of word-of-mouth. Market. Lett. 12, 3, 211--223.Google ScholarGoogle ScholarCross RefCross Ref
  19. Amit Goyal, Francesco Bonchi, and Laks VS Lakshmanan. 2010. Learning influence probabilities in social networks. In Proceedings of the 3rd ACM International Conference on Web Search and Data Mining. ACM, 241--250. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. D. Gruhl, R. Guha, D. Liben-Nowell, and A. Tomkins. 2004. Information diffusion through blogspace. In WWW’04. Retrieved from www.www2004.org/proceedings/docs/1p491.pdf. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. M. Elizabeth Halloran, Neil M. Ferguson, Stephen Eubank, Ira M. Longini, Derek A. T. Cummings, Bryan Lewis, Shufu Xu, Christophe Fraser, Anil Vullikanti, Timothy C. Germann, Diane Wagener, Richard Beckman, Kai Kadau, Chris Barrett, Catherine A. Macken, Donald S. Burke, and Philip Cooley. 2008. Strategies for mitigating an influenza pandemic. Proc. Natl. Acad. Sci. 105, 12, 4639--4644.Google ScholarGoogle ScholarCross RefCross Ref
  22. Yukio Hayashi, Masato Minoura, and Jun Matsukubo. 2003. Recoverable prevalence in growing scale-free networks and the effective immunization. arXiv:cond-mat/0305549 v2 (August 6, 2003).Google ScholarGoogle Scholar
  23. H. W. Hethcote. 2000. The mathematics of infectious diseases. SIAM Rev. 42, 4, 599--653. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Glen Jeh and Jennifer Widom. 2003. Scaling personalized web search. In Proceedings of the 12th International Conference on World Wide Web (WWW’03). ACM, New York, NY, USA, 271--279. DOI:http://dx.doi.org/10.1145/775152.775191 Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. David Kempe, Jon Kleinberg, and Éva Tardos. 2003. Maximizing the spread of influence through a social network. In Conference of the ACM Special Interest Group on Knowledge Discovery and Data Mining. ACM Press, New York, NY, 137--146. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. J. O. Kephart and S. R. White. 1993. Measuring and modeling computer virus prevalence. IEEE Computer Society Symposium on Research in Security and Privacy. 2--15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Masahiro Kimura, Kazumi Saito, and Hiroshi Motoda. 2008. Minimizing the spread of contamination by blocking links in a network. In Proceedings of the 23rd National Conference on Artificial Intelligence (AAAI’08). AAAI Press, 1175--1180. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Jon M. Kleinberg. 1998. Authoritative sources in a hyperlinked environment. In ACM-SIAM Symposium on Discrete Algorithms. 604--632. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Chris J. Kuhlman, Gaurav Tuli, Samarth Swarup, Madhav V. Marathe, and S. S. Ravi. 2013. Blocking simple and complex contagion by edge removal. In Proceedings of the ICDM. 399--408.Google ScholarGoogle Scholar
  30. Ravi Kumar, Jasmine Novak, Prabhakar Raghavan, and Andrew Tomkins. 2003. On the bursty evolution of blogspace. In WWW’03: Proceedings of the 12th International Conference on World Wide Web. ACM Press, New York, NY, USA, 568--576. DOI:http://dx.doi.org/10.1145/775152.775233 Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. T. Lappas, E. Terzi, D. Gunopoulos, and H. Mannila. 2010. Finding effectors in social networks. In Proceedings of the SIGKDD. 1059--1068. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Thomas Lengauer and Robert Endre Tarjan. 1979. A fast algorithm for finding dominators in a flowgraph. ACM Trans. Program. Lang. Syst. 1, 1 (January 1979), 121--141. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Jure Leskovec, Lada A. Adamic, and Bernardo A. Huberman. 2006. The dynamics of viral marketing. In EC’06: Proceedings of the 7th ACM Conference on Electronic Commerce. ACM Press, New York, NY, USA, 228--237. DOI:http://dx.doi.org/10.1145/1134707.1134732 Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne VanBriesen, and Natalie S. Glance. 2007a. Cost-effective outbreak detection in networks. In Proceedings of the KDD. 420--429. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Jure Leskovec, Mary McGlohon, Christos Faloutsos, Natalie Glance, and Matthew Hurst. 2007b. Cascading behavior in large blog graphs: Patterns and a model. In Society of Applied and Industrial Mathematics: Data Mining. 551--556.Google ScholarGoogle Scholar
  36. Shuyang Lin, Fengjiao Wang, Qingbo Hu, and Philip S. Yu. 2013. Extracting social events for learning better information diffusion models. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 365--373. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Nilly Madar, Tomer Kalisky, Reuven Cohen, Daniel ben Avraham, and Shlomo Havlin. 2004. Immunization and epidemic dynamics in complex networks. Eur. Phys. J. B 38, 2, 269--276.Google ScholarGoogle ScholarCross RefCross Ref
  38. Yasuko Matsubara, Yasushi Sakurai, B. Aditya Prakash, Lei Li, and Christos Faloutsos. 2012. Rise and fall patterns of information diffusion: Model and implications. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’12). 6--14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. A. G. McKendrick. 1925. Applications of mathematics to medical problems. In Proceedings of the Edinburgh Mathematical Society, Vol. 44. 98--130.Google ScholarGoogle ScholarCross RefCross Ref
  40. J. Medlock and A. P. Galvani. 2009. Optimizing influenza vaccine distribution. Science 325, 5948, 1705--1708.Google ScholarGoogle Scholar
  41. Lauren Ancel Meyers, M. E. J. Newman, and Babak Pourbohloul. 2006. Predicting epidemics on directed contact networks. J. Theoretical Biol. 240, 3, 400--418. DOI:http://dx.doi.org/DOI: 10.1016/j.jtbi.2005.10.004Google ScholarGoogle ScholarCross RefCross Ref
  42. James Moody and Douglas R. White. 2003. Social cohesion and embeddedness: a hierarchical conception of social groups. Am. Sociol. Rev. 68, 1, 39--54.Google ScholarGoogle ScholarCross RefCross Ref
  43. Fred Morstatter, Jürgen Pfeffer, Huan Liu, and Kathleen M. Carley. 2013. Is the sample good enough? Comparing data from Twitter’s streaming API with Twitter’s firehose. In Proceedings of ICWSM. 400--408.Google ScholarGoogle Scholar
  44. NDSSL. 2007. Synthetic data products for societal infrastructures and protopopulations: Data set 2.0. NDSSL-TR-07-003. Retreived from http://ndssl.vbi.vt.edu/Publications/ndssl-tr-07-003.pdf.Google ScholarGoogle Scholar
  45. Kenrad E. Nelson. 2005. Epidemiology of infectious disease: General principles. Infectious Disease Epidemiology Theory and Practice. Aspen Publishers, Gaithersburg, MD, 17--48.Google ScholarGoogle Scholar
  46. M. E. J. Newman. 2005. A measure of betweenness centrality based on random walks. Soc. Netw. 27, 1, 39--54.Google ScholarGoogle ScholarCross RefCross Ref
  47. Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1998. The PageRank Citation Ranking: Bringing Order to the Web. Technical Report. Stanford Digital Library Technologies Project. Retrived from http://dbpubs.stanford.edu/pub/1999-66 Paper SIDL-WP-1999-0120 (version of 11/11/1999).Google ScholarGoogle Scholar
  48. Romualdo Pastor-Satorras and Alessandro Vespignani. 2002. Epidemic dynamics in finite size scale-free networks. Phys. Rev. E 65, 3, 1--4.Google ScholarGoogle ScholarCross RefCross Ref
  49. B. Aditya Prakash, Deepayan Chakrabarti, Michalis Faloutsos, Nicholas Valler, and Christos Faloutsos. 2011. Threshold conditions for arbitrary cascade models on arbitrary networks. In Proceedings of the ICDM. 549--575. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. B. Aditya Prakash, Jilles Vreeken, and Christos Faloutsos. 2012. Spotting culprits in epidemics: How many and which ones?. In Proceedings of the ICDM. 11--20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. M. Richardson and P. Domingos. 2002. Mining knowledge-sharing sites for viral marketing. In Proceedings of the SIGKDD Conference. 61--70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Kazumi Saito, Ryohei Nakano, and Masahiro Kimura. 2008. Prediction of information diffusion probabilities for independent cascade model. In Knowledge-Based Intelligent Information and Engineering Systems. Springer, 67--75. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. C. Seshadhri, Tamara G. Kolda, and Ali Pinar. 2012. Community structure and scale-free collections of Erdős-Rényi graphs. Phys. Rev. E 85, 5, 1--9.Google ScholarGoogle ScholarCross RefCross Ref
  54. Devavrat Shah and Tauhid Zaman. 2011. Rumors in a network: Who’s the culprit? IEEE Trans. Inf. Theory 57, 8, 5163--5181. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Min-Zheng Shieh, Shi-Chun Tsai, and Ming-Chuan Yang. 2012. On the inapproximability of maximum intersection problems. Inf. Process. Lett. 112, 19 (Oct. 2012), 723--727. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Hanghang Tong, B. Aditya Prakash, Tina Eliassi-Rad, Michalis Faloutsos, and Christos Faloutsos. 2012. Gelling, and melting, large graphs by edge manipulation. In Proceedings of the 21st ACM International Conference on Information and Knowledge Management (CIKM’12). New York, NY, USA, 245--254. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Hanghang Tong, B. Aditya Prakash, Charalampos E. Tsourakakis, Tina Eliassi-Rad, Christos Faloutsos, and Duen Horng Chau. 2010. On the vulnerability of large graphs. In Proceedings of the ICDM. 1091--1096. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Staal A. Vinterbo. 2004. Privacy: A machine learning view. IEEE Trans. Knowl. Data Eng. 16, 8 (Aug. 2004), 939--948. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Yang Wang, Deepayan Chakrabarti, Chenxi Wang, and Christos Faloutsos. 2003. Epidemic spreading in real networks: An eigenvalue viewpoint. In Symposium on Reliable Distributed Systems. IEEE Computer Society Press, Los Alamitos, CA, 25--34.Google ScholarGoogle ScholarCross RefCross Ref
  60. Eduardo C. Xavier. 2012. A note on a maximum k-subset intersection problem. Inf. Process. Lett. 112, 12 (June 2012), 471--472. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Reza Yaesoubi and Ted Cohen. 2011. Dynamic health policies for controlling the spread of emerging infections: Influenza as an example. PLoS ONE 6, 9, 1--11.Google ScholarGoogle ScholarCross RefCross Ref
  62. Yao Zhang and B. Aditya Prakash. 2014. DAVA: Distributing vaccines over large networks under prior information. In Proceedings of the SIAM International Conference on Data Mining (SDM’14). 46--54.Google ScholarGoogle Scholar

Index Terms

  1. Data-Aware Vaccine Allocation Over Large Networks

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Knowledge Discovery from Data
      ACM Transactions on Knowledge Discovery from Data  Volume 10, Issue 2
      October 2015
      291 pages
      ISSN:1556-4681
      EISSN:1556-472X
      DOI:10.1145/2835206
      Issue’s Table of Contents

      Copyright © 2015 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 12 October 2015
      • Revised: 1 July 2015
      • Accepted: 1 July 2015
      • Received: 1 July 2014
      Published in tkdd Volume 10, Issue 2

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader