skip to main content
10.1145/2807426.2807430acmotherconferencesArticle/Chapter ViewAbstractPublication PagespppjConference Proceedingsconference-collections
research-article

On-Line Synchronous Total Purely Functional Data-Flow Programming on the Java Virtual Machine with Sig

Published:08 September 2015Publication History

ABSTRACT

Sig is the prototype of a purely declarative programming language and system for the processing of discrete, clocked synchronous, potentially real-time data streams. It aspires to combine good static safety, scalability and platform independence, with semantics that are precise, concise and suitable for domain experts. Its semantical and operational core has been formalized. Here we discuss the general strategy for making Sig programs executable, and describe the current state of a prototype compiler. The compiler is implemented in Java and targets the JVM. By careful cooperation with the JVM just-in-time compiler, it provides immediate executability in a simple and quickly extensible runtime environment, with code performance suitable for moderate real-time applications such as interactive audio synthesis.

References

  1. B. Armstrong and R. Eigenmann. Challenges in the automatic parallelization of large-scale computational applications. In Proc. of SPIE 4528, pp. 50--60, 2001.Google ScholarGoogle Scholar
  2. J. Backus. Can programming be liberated from the von Neumann style? Comm. ACM, 21(8), 1978. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. P. Bjesse, K. Claessen, M. Sheeran, and S. Singh. Lava: Hardware design in haskell. In Proc. ICFP 1998, pp. 174--184, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. G. Bollella, el al. Programming with non-heap memory in the real-time specification for Java. In Proc. OOPSLA 2003, pp. 361--369, ACM, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice. Lustre: A declarative language for programming synchronous systems. In Proc. POPL 1987, pp. 178--188. ACM, 1987. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. P. Caspi and M. Pouzet. A co-iterative characterization of synchronous stream functions. ENTCS, 11:1--21, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. P. Caspi and M. Pouzet. Lucid Synchrone, a functional extension of Lustre. Tech. rep., Université Pierre et Marie Curie, Laboratoire LIP6, 2000.Google ScholarGoogle Scholar
  8. W. Citrin, R. Hall, C. Santiago, and B. Zorn. Addressing the scalability problem in visual programming through containment, zooming and fisheyeing. In Proc. Aerospace Conf., volume 4, pp. 189--202. IEEE, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  9. ESA. ARIANE 5 Flight 501 Failure Report by the Inquiry Board, 1996.Google ScholarGoogle Scholar
  10. A. Gal, et al. Trace-based just-in-time type specialization for dynamic languages. SIGPLAN Not., 44(6):465--478, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. K. Hammond and G. Michaelson. The design of Hume: A high-level language for the real-time embedded systems domain. In LNCS 3016, pp. 127--142. Springer-Verlag, 2003.Google ScholarGoogle Scholar
  12. P. Hudak, A. Courtney, H. Nilsson, and J. Peterson. Arrows, robots, and functional reactive programming. In LNCS 2638, pp. 159--187. Springer-Verlag, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  13. J. Hughes. Why functional programming matters. Computer Journal, 32(2), 1989. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. J. Hughes. Programming with arrows. In LNCS 3622, pp. 73--129. Springer-Verlag, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. O. Kiselyov, C.-C. Shan, and Y. Kameyama. Bridging the theory of staged programming languages and the practice of high-performance computing. Tech. Rep. 2012--4, National Institute of Informatics, Japan, 2012.Google ScholarGoogle Scholar
  16. M. Lepper and B. Trancón y Widemann. Optimization of visitor performance by reflection-based analysis. In LNCS 6707, pp. 15--30. Springer-Verlag, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. H. Liu, E. Cheng, and P. Hudak. Causal commutative arrows. J. Funct. Program., pp. 467--496, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. A. Loth. Synthese von Kontrollfluss für eine synchrone Datenflusssprache. Master's thesis, Ilmenau University of Technology, 2015.Google ScholarGoogle Scholar
  19. H. Nilsson, A. Courtney, and J. Peterson. Functional reactive programming, continued. In Proc. Haskell Workshop, pp. 51--64. ACM, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. J. O'Donnell. Hydra: hardware description in a functional language using recursion equations and high order combining forms. In The Fusion of Hardware Design and Verification, pp. 309--328. North-Holland, 1988.Google ScholarGoogle Scholar
  21. Y. Orlarey, D. Fober, and S. Letz. Syntactical and semantical aspects of Faust. Soft Comput., 8(9):623--632, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. F. Pizlo, D. Frampton, and A. L. Hosking. Fine-grained adaptive biased locking. In Proc. PPPJ 2011, pp. 171--181, ACM, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. G. Rouleau and S. Popinchalk. Initializing parameters. Matlab Central Blog, 2008. Retrieved 2013-12-31.Google ScholarGoogle Scholar
  24. J. M. Spivey. The Z Notation: a reference manual. International Series in Computer Science. Prentice Hall, 1988. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. W. Taha and T. Sheard. MetaML and multi-stage programming with explicit annotations. Theor. Comput. Sci., 248(1-2):211--242, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. B. Trancón y Widemann and M. Lepper. Foundations of total functional data-flow programming. In EPTCS 153, pp. 143--167, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  27. B. Trancón y Widemann and M. Lepper. Sound and soundness -- practical total functional data-flow programming {demo}. In Proc. FARM 2014, pp. 35--36. ACM Digital Library, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. B. Trancón y Widemann and M. Lepper. Laminar data flow: On the role of slicing in functional data-flow programming. In Draft Proc. TFP 2015. INRIA, 2015.Google ScholarGoogle Scholar
  29. B. Trancón y Widemann and M. Lepper. The Shepard Tone and Higher-Order Multi-Rate Synchronous Data-Flow Programming in Sig. In Proc. FARM 2015, ACM Digital Library, to appear 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. T. Uustalu and V. Vene. The essence of dataflow programming. In LNCS 3780, pp. 2--18. Springer-Verlag, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Z. Wan and P. Hudak. Functional reactive programming from first principles. SIGPLAN Not., 35(5):242--252, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. On-Line Synchronous Total Purely Functional Data-Flow Programming on the Java Virtual Machine with Sig

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Other conferences
        PPPJ '15: Proceedings of the Principles and Practices of Programming on The Java Platform
        September 2015
        190 pages
        ISBN:9781450337120
        DOI:10.1145/2807426

        Copyright © 2015 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 8 September 2015

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed limited

        Acceptance Rates

        PPPJ '15 Paper Acceptance Rate15of27submissions,56%Overall Acceptance Rate29of58submissions,50%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader