skip to main content
10.1145/2807442.2807486acmconferencesArticle/Chapter ViewAbstractPublication PagesuistConference Proceedingsconference-collections
research-article

Projectibles: Optimizing Surface Color For Projection

Authors Info & Claims
Published:05 November 2015Publication History

ABSTRACT

Typically video projectors display images onto white screens, which can result in a washed out image. Projectibles algorithmically control the display surface color to increase the contrast and resolution. By combining a printed image with projected light, we can create animated, high resolution, high dynamic range visual experiences for video sequences. We present two algorithms for separating an input video sequence into a printed component and projected component, maximizing the combined contrast and resolution while minimizing any visual artifacts introduced from the decomposition. We present empirical measurements of real-world results of six example video sequences, subjective viewer feedback ratings, and we discuss the benefits and limitations of Projectibles. This is the first approach to combine a static display with a dynamic display for the display of video, and the first to optimize surface color for projection of video.

Skip Supplemental Material Section

Supplemental Material

p137.mp4

mp4

70.9 MB

References

  1. Aliaga, D. G., Yeung, Y. Y. H., Law, A., Sajadi, B., and Majumder, A. Fast high-resolution appearance editing using superimposed projections. ACM Transactions on Graphics 31, 2 (Apr. 2012), 1--13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Ashdown, M., Okabe, T., Sato, I., and Sato, Y. Robust Content-Dependent Photometric Projector Compensation. In IEEE CVPR (2006). Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Batlle, J., Mouaddib, E., and Salvi, J. Recent progress in coded structured light as a technique to solve the correspondence problem: a survey. Pattern recognition 31, 7 (1998), 963--982.Google ScholarGoogle ScholarCross RefCross Ref
  4. Bimber, O., Coriand, F., Kleppe, A., Bruns, E., Zollmann, S., and Langlotz, T. Superimposing pictorial artwork with projected imagery. IEEE Multimedia 12, 1 (2005), 16--26. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bimber, O., Emmerling, A., and Klemmer, T. Embedded Entertainment with Smart Projectors. IEEE Computer 38, 1 (Jan. 2005), 16--26. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bimber, O., and Iwai, D. Superimposing dynamic range. ACM Transactions on Graphics 27, 5 (Dec. 2008), 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Bimber, O., Iwai, D., Wetzstein, G., and Grundhöfer, A. The visual computing of projector-camera systems. Computer Graphics Forum 27 (2008), 2219--2245.Google ScholarGoogle ScholarCross RefCross Ref
  8. Chen, X., Yang, X., Xiao, S., and Li, M. A practical radiometric compensation method for projector-based augmentation. In IEEE ISMAR (2008).Google ScholarGoogle Scholar
  9. Didyk, P., Eisemann, E., Ritschel, T., Myszkowski, K., and Seidel, H.-P. Apparent display resolution enhancement for moving images. In ACM Transactions on Graphics (TOG), vol. 29, ACM (2010), 113. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Ferwerda, J. a., Shirley, P., Pattanaik, S. N., and Greenberg, D. P. A model of visual masking for computer graphics. In ACM SIGGRAPH (1997). Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Grundh, A., Grundhöfer, A., and Bimber, O. Real-time adaptive radiometric compensation. IEEE Transactions on Visualization and Computer Graphics 14, 1 (2008), 97--108. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Guarnieri, G., Albani, L., and Ramponi, G. Image-splitting techniques for a dual-layer high dynamic range LCD display. Journal of Electronic Imaging 17, 4 (Oct. 2008).Google ScholarGoogle Scholar
  13. Guarnieri, G., Albani, L., and Ramponi, G. Minimum-Error Splitting Algorithm for a Dual Layer LCD Display. Journal of Display Technology 4, 4 (2008), 383--390.Google ScholarGoogle ScholarCross RefCross Ref
  14. Hirsch, M., Wetzstein, G., and Raskar, R. A compressive light field projection system. ACM Transactions on Graphics (TOG) 33, 4 (2014). Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Iwai, D., Takeda, S., Hino, N., and Sato, K. Projection screen reflectance control for high contrast display using photochromic compounds and uv leds. Optics express 22, 11 (2014).Google ScholarGoogle Scholar
  16. Joshi, N., Mehta, S., Drucker, S., Stollnitz, E., Hoppe, H., Uyttendaele, M., and Cohen, M. Cliplets: juxtaposing still and dynamic imagery. In ACM UIST (2012). Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Juang, R., and Majumder, A. Photometric Self-Calibration of a Projector-Camera System. In IEEE CVPR (2007).Google ScholarGoogle ScholarCross RefCross Ref
  18. Kinjo, T., Saito, N., and Omodani, M. Vivid image projection system using e-paper active screen. Journal of the Society for Information Display 20, 10 (2012), 559--565.Google ScholarGoogle ScholarCross RefCross Ref
  19. Lanman, D., Heide, F., Reddy, D., Kautz, J., Pulli, K., and Luebke, D. Cascaded displays: spatiotemporal superresolution using offset pixel layers. In ACM SIGGRAPH 2014 Emerging Technologies, ACM (2014). Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Law, A. J., Aliaga, D. G., Sajadi, B., Majumder, A., and Pizlo, Z. Perceptually Based Appearance Modification for Compliant Appearance Editing. Computer Graphics Forum 30, 8 (Dec. 2011), 2288--2300.Google ScholarGoogle ScholarCross RefCross Ref
  21. Liao, Z., Joshi, N., and Hoppe, H. Automated video looping with progressive dynamism. ACM Transactions on Graphics 32, 4 (July 2013), 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Majumder, A., and Stevens, R. Perceptual photometric seamlessness in projection-based tiled displays. ACM Transactions on Graphics 24, 1 (Jan. 2005), 118--139. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Nayar, S. K., Peri, H., Grossberg, M. D., and Belhumeur, P. N. A projection system with radiometric compensation for screen imperfections. In ICCV PROCAMS (2003).Google ScholarGoogle Scholar
  24. Ramasubramanian, M., Pattanaik, S., and Greenberg, D. A perceptually based physical error metric for realistic image synthesis. In ACM SIGGRAPH (1999). Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Seetzen, H., Heidrich, W., Stuerzlinger, W., Ward, G., Whitehead, L., Trentacoste, M., Ghosh, A., and Vorozcovs, A. High dynamic range display systems. ACM Transactions on Graphics 23, 3 (Aug. 2004), 760. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Seetzen, H., Whitehead, L., and Ward, G. A High Dynamic Range Display Using Low and High Resolution Modulators. In SID (2003), 1450--1453.Google ScholarGoogle ScholarCross RefCross Ref
  27. Sheng, Y., Yapo, T. C., and Cutler, B. Global Illumination Compensation for Spatially Augmented Reality. Computer Graphics Forum 29, 2 (May 2010), 387--396.Google ScholarGoogle ScholarCross RefCross Ref
  28. Trentacoste, M., Heidrich, W., Whitehead, L., Seetzen, H., and Ward, G. Photometric image processing for high dynamic range displays. Journal of Visual Communication and Image Representation 18, 5 (Oct. 2007), 439--451. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Wang, D., Sato, I., Okabe, T., and Sato, Y. Radiometric Compensation in a Projector-Camera System Based Properties of Human Vision System. In IEEE CVPR Workshops (CVPRW) (2005). Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Wetzstein, G. Radiometric Compensation through Inverse Light Transport University of British Columbia. In Environment (2007).Google ScholarGoogle Scholar

Index Terms

  1. Projectibles: Optimizing Surface Color For Projection

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      UIST '15: Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology
      November 2015
      686 pages
      ISBN:9781450337793
      DOI:10.1145/2807442

      Copyright © 2015 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 5 November 2015

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      UIST '15 Paper Acceptance Rate70of297submissions,24%Overall Acceptance Rate842of3,967submissions,21%

      Upcoming Conference

      UIST '24

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader