skip to main content
10.1145/2808492.2808565acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicimcsConference Proceedingsconference-collections
research-article

Saliency detection for RGBD images

Published: 19 August 2015 Publication History

Abstract

Additional depth information from RGBD images is one of characteristics different from conventional 2D images. In this paper, we propose an effective saliency model to detect salient regions in RGBD images. Color contrast and depth contrast are first enhanced with the weighting of depth-based object probability. Then the region merging based saliency refinement is exploited to obtain the color saliency map and depth saliency map, respectively. Finally, a location prior of salient objects is integrated with color saliency and depth saliency to obtain the regional saliency map. Both subjective and objective evaluations on a public RGBD image dataset demonstrate that the proposed saliency model outperforms the state-of-the-art saliency models.

References

[1]
L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual attention for rapid scene analysis. IEEE TPAMI, 20(11): 1254--1259, 1998.
[2]
Z. Liu, R. Shi, L. Shen, Y. Xue, K. N. Ngan, and Z. Zhang. Unsupervised salient object segmentation based on kernel density estimation and two-phase graph cut. IEEE TMM, 14(4):1275--1289, 2012.
[3]
M. M. Cheng, N. J. Mitra, X. Huang, P. Torr and S. M. Hu. Global contrast based salient region detection. IEEE TPAMI, 37(3):569--582, 2015.
[4]
W. Zhu, S. Liang, Y. Wei and J. Sun. Saliency optimization from robust background detection. In CVPR, pages 2814--2821. IEEE, 2014.
[5]
Z. Liu, W. Zou, and O. Le Meur. Saliency tree: A novel saliency detection framework. IEEE TIP, 23(5):1937--1952, 2014.
[6]
H. Jiang, J. Wang, Z. Yuan, Y. Wu, N. Zheng, and S. Li. Salient object detection: A discriminative regional feature integration approach. In CVPR, pages 2083--2090. IEEE, 2013.
[7]
Y. Zhang, G. Jiang, M. Yu, and K. Chen. Stereoscopic visual attention model for 3D video. In MMM, pages 314--324. Springer, 2010.
[8]
H. Peng, B. Li, W. Xiong, W. Hu and R. Ji. RGBD salient object detection: a benchmark and algorithms. In ECCV, pages 92--109. Springer, 2014.
[9]
K. Desingh, K. M. Krishna, D. Rajan, and C. V. Jawahar. Depth really matters: Improving visual salient region detection with depth. In BMVC, article 98. BMVA, 2013.
[10]
Y. Niu, Y. Geng, X. Li, and F. Liu. Leveraging stereopsis for saliency analysis. In CVPR, pages 454--461. IEEE, 2012.
[11]
R. Ju, L. Ge, W. Geng, T. Ren and G. Wu. Depth saliency based on anisotropic center-surround difference. In ICIP, pages 1115--1119. IEEE, 2014.
[12]
X. Fan, Z. Liu and G. Sun. Salient region detection for stereoscopic images. In DSP, pages 454--458. IEEE, 2014.
[13]
A. Ciptadi, T. Hermans, and J. M. Rehg, An in depth view of saliency. In BMVC, article 112. BMVA, 2013.
[14]
P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour detection and hierarchical image segmentation. IEEE TPAMI, 33(5):898--916, 2011.
[15]
N. Otsu. A threshold selection method from gray-level histograms. IEEE TSMC, 9(1):62--66, 1979.

Cited By

View all
  • (2022)DMRA: Depth-Induced Multi-Scale Recurrent Attention Network for RGB-D Saliency DetectionIEEE Transactions on Image Processing10.1109/TIP.2022.315493131(2321-2336)Online publication date: 2022
  • (2022)LIANet: Layer Interactive Attention Network for RGB-D Salient Object DetectionIEEE Access10.1109/ACCESS.2022.315693510(25435-25447)Online publication date: 2022
  • (2021)Hierarchical Alternate Interaction Network for RGB-D Salient Object DetectionIEEE Transactions on Image Processing10.1109/TIP.2021.306268930(3528-3542)Online publication date: 2021
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
ICIMCS '15: Proceedings of the 7th International Conference on Internet Multimedia Computing and Service
August 2015
397 pages
ISBN:9781450335287
DOI:10.1145/2808492
  • General Chairs:
  • Ramesh Jain,
  • Shuqiang Jiang,
  • Program Chairs:
  • John Smith,
  • Jitao Sang,
  • Guohui Li
© 2015 Association for Computing Machinery. ACM acknowledges that this contribution was authored or co-authored by an employee, contractor or affiliate of a national government. As such, the Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes only.

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 19 August 2015

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. RGBD image
  2. depth information
  3. saliency detection

Qualifiers

  • Research-article

Funding Sources

Conference

ICIMCS '15

Acceptance Rates

ICIMCS '15 Paper Acceptance Rate 20 of 128 submissions, 16%;
Overall Acceptance Rate 163 of 456 submissions, 36%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 05 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2022)DMRA: Depth-Induced Multi-Scale Recurrent Attention Network for RGB-D Saliency DetectionIEEE Transactions on Image Processing10.1109/TIP.2022.315493131(2321-2336)Online publication date: 2022
  • (2022)LIANet: Layer Interactive Attention Network for RGB-D Salient Object DetectionIEEE Access10.1109/ACCESS.2022.315693510(25435-25447)Online publication date: 2022
  • (2021)Hierarchical Alternate Interaction Network for RGB-D Salient Object DetectionIEEE Transactions on Image Processing10.1109/TIP.2021.306268930(3528-3542)Online publication date: 2021
  • (2020)Cross-Modal Weighting Network for RGB-D Salient Object DetectionComputer Vision – ECCV 202010.1007/978-3-030-58520-4_39(665-681)Online publication date: 19-Nov-2020
  • (2019)RGB-D image saliency detection from 3D perspectiveMultimedia Tools and Applications10.1007/s11042-018-6319-478:6(6787-6804)Online publication date: 17-May-2019
  • (2017)Saliency detection for RGBD image using optimization2017 12th International Conference on Computer Science and Education (ICCSE)10.1109/ICCSE.2017.8085532(440-443)Online publication date: Aug-2017
  • (2016)Depth-aware saliency detection using discriminative saliency fusion2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)10.1109/ICASSP.2016.7471952(1626-1630)Online publication date: Mar-2016
  • (2016)Improving RGBD Saliency Detection Using Progressive Region Classification and Saliency FusionIEEE Access10.1109/ACCESS.2016.26327244(8987-8994)Online publication date: 2016

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media