skip to main content
10.1145/2808719.2808723acmconferencesArticle/Chapter ViewAbstractPublication PagesbcbConference Proceedingsconference-collections
research-article

Two-dimensional model of bipolar PopZ polymerization in caulobacter crescentus

Published: 09 September 2015 Publication History

Abstract

The asymmetric location of proteins is crucial to the Caulobacter cell cycle. At cell division, the landmark protein PopZ is located at the old ends of the newborn cells, and later in the cell cycle PopZ adopts a bipolar pattern in the predivisional cell. The polar localization of PopZ plays a determining role in the intracellular location of certain key cell cycle regulators and in tethering the replicated chromosome to the two ends of the cell. PopZ polymerizes at the poles of a Caulobacter cell by a self-organizing mechanism. Experiments demonstrate that popZ gene replication is indispensable in forming bipolar PopZ patterns. Hence, to study the mechanism of PopZ bipolarity, we propose a model of spatiotemporal organization in two spatial dimensions, based on a Turing mechanism of pattern formation in coordination with chromosome replication and segregation. We explore PopZ patterns on domains of different shapes and different locations of popZ genes. Both deterministic and stochastic simulations capture the observed variations in the location and timing of PopZ polymerization.

References

[1]
C. C. Boutte, J. T. Henry, and S. Crosson. ppgpp and polyphosphate modulate cell cycle progression in caulobacter crescentus. Journal of Bacteriology, 194(1):28--35, 01 2012.
[2]
G. R. Bowman, L. R. Comolli, J. Zhu, M. Eckart, M. Koenig, K. H. Downing, W. Moerner, T. Earnest, and L. Shapiro. A polymeric protein anchors the chromosomal origin/parb complex at a bacterial cell pole. Cell, 134(6):945--955, 09 2008.
[3]
G. Charbon, M. T. Cabeen, and C. Jacobs-Wagner. Bacterial intermediate filaments: in vivo assembly, organization, and dynamics of crescentin. Genes and Development, 23(9):1131--1144, 05 2009.
[4]
J. Collier and L. Shapiro. Spatial complexity and control of a bacterial cell cycle. Current Opinion in Biotechnology, 18(4):333--340, 8 2007.
[5]
E. Crampin, E. Gaffney, and P. Maini. Reaction and diffusion on growing domains: Scenarios for robust pattern formation. Bulletin of Mathematical Biology, 61(6):1093--1120, 1999.
[6]
G. Ebersbach, A. Briegel, G. J. Jensen, and C. Jacobs-Wagner. A self-associating protein critical for chromosome attachment, division, and polar organization in caulobacter. Cell, 134(6):956--968, 9 2008.
[7]
R. Erban and J. Chapman, S. Stochastic modelling of reaction-diffusion processes: algorithms for bimolecular reactions. Physical Biology, 6(4), 2009.
[8]
R. Erban, S. J. Chapman, and P. K. Maini. A Practical Guide to Stochastic Simulations of Reaction-Diffusion Processes. arXiv:0704.1908, 2007.
[9]
B. Ermentrout. Stripes or spots? nonlinear effects in bifurcation of reaction-diffusion equations on the square. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 434(1891):413--417, 08 1991.
[10]
A. Gierer and H. Meinhardt. A theory of biological pattern formation. Kybernetik, 12(1):30--39, 1972.
[11]
D. Gillespie. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys., 22:403--434, 1976.
[12]
J. T. Henry and S. Crosson. Chromosome replication and segregation govern the biogenesis and inheritance of inorganic polyphosphate granules. Molecular Biology of the Cell, 24(20):3177--3186, 10 2013.
[13]
K. C. Huang, R. Mukhopadhyay, and N. S. Wingreen. A curvature-mediated mechanism for localization of lipids to bacterial poles. PLoS Computational Biology, 2(11):e151, 11 2006.
[14]
S. Kartik, F. Li, M. Paul, Y. Cao, and J. Tyson. Spatiotemporal model of popz localization in caulobacter crescentus. Submitted to Plos Computational Biology.
[15]
J. S. Kim and S. X. Sun. Morphology of caulobacter crescentus and the mechanical role of crescentin. Biophysical Journal, 96(8):L47--L49, 04 2009.
[16]
G. Laloux and C. Jacobs-Wagner. How do bacteria localize proteins to the cell pole? Journal of Cell Science, 127(1):11--19, 01 2014.
[17]
H. Lam, J.-Y. Matroule, and C. Jacobs-Wagner. The asymmetric spatial distribution of bacterial signal transduction proteins coordinates cell cycle events. Developmental Cell, 5(1):149--159, 7 2003.
[18]
P. K. Maini, T. E. Woolley, R. E. Baker, E. A. Gaffney, and S. S. Lee. Turing's model for biological pattern formation and the robustness problem. Interface Focus, 2(4):487--496, 06 2012.
[19]
J. D. Murray. Mathematical Biology. II Spatial Models and Biomedical Applications. Springer-Verlag New York Incorporated, 2001.
[20]
M. Myerscough and J. Murray. Analysis of propagating pattern in a chemotaxis system. Bulletin of Mathematical Biology, 54(1):77--94, 1992.
[21]
J. S. Poindexter. The caulobacters: ubiquitous unusual bacteria. Microbiological Reviews, 45(1):123--179, 03 1981.
[22]
K. S. Ramamurthi and R. Losick. Negative membrane curvature as a cue for subcellular localization of a bacterial protein. Proceedings of the National Academy of Sciences of the United States of America, 106(32):13541--13545, 08 2009.
[23]
D. Z. Rudner and R. Losick. Protein subcellular localization in bacteria. Cold Spring Harbor Perspectives in Biology, 2(4):a000307, 04 2010.
[24]
L. A. Segel and J. L. Jackson. Dissipative structure: An explanation and an ecological example. Journal of Theoretical Biology, 37(3):545--559, 12 1972.
[25]
O. Sliusarenko, J. Heinritz, T. Emonet, and C. Jacobs-Wagner. High-throughput, subpixel-precision analysis of bacterial morphogenesis and intracellular spatio-temporal dynamics. Molecular microbiology, 80(3):612--627, 05 2011.
[26]
M. Thanbichler and L. Shapiro. Chromosome organization and segregation in bacteria. Journal of Structural Biology, 156(2):292--303, 11 2006.
[27]
Turing, A. M. The Chemical Basis of Morphogenesis. Philosophical Transactions of the Royal Society of London, 237:37--72, 1952.
[28]
J. N. Werner, E. Y. Chen, J. M. Guberman, A. R. Zippilli, J. J. Irgon, and Z. Gitai. Quantitative genome-scale analysis of protein localization in an asymmetric bacterium. Proceedings of the National Academy of Sciences, 106(19):7858--7863, 05 2009.
[29]
J. Winkler, A. Seybert, L. König, S. Pruggnaller, U. Haselmann, V. Sourjik, M. Weiss, A. S. Frangakis, A. Mogk, and B. Bukau. Quantitative and spatio-temporal features of protein aggregation in escherichia coli and consequences on protein quality control and cellular ageing. The EMBO Journal, 29(5):910--923, 03 2010.
[30]
M. Zhu and J. Murray. Parameter domains for spots and stripes in mechanical models for biological pattern formation. Journal of Nonlinear Science, 5(4):317--336, 1995.

Cited By

View all
  • (2022)Modeling the temporal dynamics of master regulators and CtrA proteolysis in Caulobacter crescentus cell cyclePLOS Computational Biology10.1371/journal.pcbi.100984718:1(e1009847)Online publication date: 28-Jan-2022

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
BCB '15: Proceedings of the 6th ACM Conference on Bioinformatics, Computational Biology and Health Informatics
September 2015
683 pages
ISBN:9781450338530
DOI:10.1145/2808719
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 09 September 2015

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. caulobacter cell cycle
  2. PopZ polarization
  3. deterministic
  4. stochastic
  5. turing pattern

Qualifiers

  • Research-article

Funding Sources

Conference

BCB '15
Sponsor:

Acceptance Rates

BCB '15 Paper Acceptance Rate 48 of 141 submissions, 34%;
Overall Acceptance Rate 254 of 885 submissions, 29%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)4
  • Downloads (Last 6 weeks)0
Reflects downloads up to 03 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2022)Modeling the temporal dynamics of master regulators and CtrA proteolysis in Caulobacter crescentus cell cyclePLOS Computational Biology10.1371/journal.pcbi.100984718:1(e1009847)Online publication date: 28-Jan-2022

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media