skip to main content
10.1145/2808719.2808737acmconferencesArticle/Chapter ViewAbstractPublication PagesbcbConference Proceedingsconference-collections
research-article

Multiple reference networks improve accuracy of signaling network construction

Published:09 September 2015Publication History

ABSTRACT

Signaling networks play a key role in almost all cellular functions and cell's response to extracellular stimuli. Constructing the topology of interactions that make up signaling networks is of utmost importance to understand how these networks function. Knockdown assays, such as RNA interference (RNAi) technology, provides us hints about the roles of individual genes involved in these networks. However, determining the correct topology of interactions between these genes remains to be challenging. Existing computational approaches are either not scalable to large networks, or they have low accuracies. In this study, we consider that problem of constructing signaling network topology from single gene knockdown experiments. We formulate this mathematically as a network editing problem and develop an efficient algorithm to solve this problem. The key contribution in this paper is that our formulation can integrate the knowledge available in the form of the topologies of an arbitrary number of reference networks. Our experiments on synthetic, semi-synthetic and real datasets demonstrate that the proposed method greatly outperforms the state of the art methods, which are limited to a single reference network, in terms of accuracy with negligible increase in computational cost. Furthermore, our experiments suggest that the accuracy of our method remains high even when evolutionarily distant reference networks are used. Application of our method to the Apoptosis and Wnt signaling pathways recovers a large number of known protein-protein interactions.

References

  1. Phylip. http://evolution.genetics.washington.edu/phylip.html. Accessed: 2015-01-05.Google ScholarGoogle Scholar
  2. M. Böck, S. Ogishima, H. Tanaka, S. Kramer, and L. Kaderali. Hub-centered gene network reconstruction using automatic relevance determination. PLoS One, 7(5):e35077, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  3. S. S. Böck. An algorithm for profile and wavefront reduction of sparse matrices. Intl J. Numerical Methods in Eng, 23(5):239--251, 1986.Google ScholarGoogle Scholar
  4. A. Bonni, A. Brunet, A. E. West, S. R. Datta, M. A. Takasu, and M. E. Greenberg. Cell survival promoted by the ras-mapk signaling pathway by transcription-dependent and -independent mechanisms. Science, 286(5443):1358--1362, Nov 1999.Google ScholarGoogle ScholarCross RefCross Ref
  5. M. Boutros, A. A. Kiger, S. Armknecht, K. Kerr, M. Hild, B. Koch, S. A. Haas, R. Paro, N. Perrimon, and H. F. A. C. Genome-wide RNAi analysis of growth and viability in drosophila cells. Science, 303(5659):832--835, Feb 2004.Google ScholarGoogle ScholarCross RefCross Ref
  6. A. L. Brass, D. M. Dykxhoorn, Y. Benita, N. Yan, A. Engelman, R. J. Xavier, J. Lieberman, and S. J. Elledge. Identification of host proteins required for hiv infection through a functional genomic screen. Science, 319(5865):921--926, Feb 2008.Google ScholarGoogle ScholarCross RefCross Ref
  7. L. Chang and M. Karin. Mammalian map kinase signalling cascades. Nature, 410(6824):37--40, Mar 2001.Google ScholarGoogle ScholarCross RefCross Ref
  8. M. Deng, F. Sun, and T. Chen. Assessment of the reliability of protein-protein interactions and protein function prediction. In Pac. Symp. Biocomputing, pages 140--151, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  9. A. Fire, S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver, and C. C. Mello. Potent and specific genetic interference by double-stranded RNA in caenorhabditis elegans. Nature, 391(6669):806--811, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  10. A. Friedman and N. Perrimon. A functional RNAi screen for regulators of receptor tyrosine kinase and erk signalling. Nature, 444(7116):230--234, Nov 2006.Google ScholarGoogle ScholarCross RefCross Ref
  11. E. E. Furlong. A functional genomics approach to identify new regulators of wnt signaling. Dev Cell, 8(5):624--626, May 2005.Google ScholarGoogle ScholarCross RefCross Ref
  12. S. Hashemikhabir, E. S. Ayaz, Y. Kavurucu, T. Can, and T. Kahveci. Large-scale signaling network reconstruction. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB), 9(6):1696--1708, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. T. Hunter. Signaling--2000 and beyond. Cell, 100(1):113--127, Jan 2000.Google ScholarGoogle Scholar
  14. L. Kaderali, E. Dazert, U. Zeuge, M. Frese, and R. Bartenschlager. Reconstructing signaling pathways from RNAi data using probabilistic boolean threshold networks. Bioinformatics, 25(17):2229--2235, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. L. Kaderali and N. Radde. Inferring gene regulatory networks from expression data. In Computational Intelligence in Bioinformatics, pages 33--74. Springer, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  16. M. Kanehisa and S. Goto. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research, 28(1):27--30, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  17. B. Knapp and L. Kaderali. Reconstruction of cellular signal transduction networks using perturbation assays and linear programming. PloS one, 8(7):e69220, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  18. M. N. Krishnan, A. Ng, B. Sukumaran, F. D. Gilfoy, P. D. Uchil, H. Sultana, A. L. Brass, R. Adametz, M. Tsui, F. Qian, R. R. Montgomery, S. Lev, P. W. Mason, R. A. Koski, S. J. Elledge, R. J. Xavier, H. Agaisse, and E. Fikrig. RNA interference screen for human genes associated with west nile virus infection. Nature, 455(7210):242--245, Sep 2008.Google ScholarGoogle ScholarCross RefCross Ref
  19. A. Lan, I. Y. Smoly, G. Rapaport, S. Lindquist, E. Fraenkel, and E. Yeger-Lotem. Responsenet: revealing signaling and regulatory networks linking genetic and transcriptomic screening data. Nucleic Acids Res, 39(Web Server issue):W424--W429, Jul 2011.Google ScholarGoogle Scholar
  20. J. Mazur, D. Ritter, G. Reinelt, and L. Kaderali. Reconstructing nonlinear dynamic models of gene regulation using stochastic sampling. BMC Bioinformatics, 10:448, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  21. R. Milo, N. Kashtan, S. Itzkovitz, M. Newman, and U. Alon. On the uniform generation of random graphs with prescribed degree sequences. arXiv preprint cond-mat/0312028, 2003.Google ScholarGoogle Scholar
  22. J. Moffat and D. M. Sabatini. Building mammalian signalling pathways with RNAi screens. Nat Rev Mol Cell Biol, 7(3):177--187, Mar 2006.Google ScholarGoogle ScholarCross RefCross Ref
  23. O. Ourfali, T. Shlomi, T. Ideker, E. Ruppin, and R. Sharan. Spine: a framework for signaling-regulatory pathway inference from cause-effect experiments. Bioinformatics, 23(13):i359--i366, Jul 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. O. E. Ozsoy and T. Can. A divide and conquer approach for construction of large-scale signaling networks from ppi and RNAi data using linear programming. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 10(4):869--883, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. P. Polakis. The many ways of wnt in cancer. Curr Opin Genet Dev, 17(1):45--51, Feb 2007.Google ScholarGoogle ScholarCross RefCross Ref
  26. R. Albert and A.-L.Barabási. Statistical mechanics of complex networks. Reviews of Modern Physics, 74(47), 2002.Google ScholarGoogle Scholar
  27. J. Scott, T. Ideker, R. M. Karp, and R. Sharan. Efficient algorithms for detecting signaling pathways in protein interaction networks. J Comput Biol, 13(2):133--144, Mar 2006.Google ScholarGoogle ScholarCross RefCross Ref
  28. R. Singh. Algorithms for the analysis of protein interaction networks. PhD thesis, Massachusetts Institute of Technology, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. M. Theis and F. Buchholz. High-throughput RNAi screening in mammalian cells with esiRNAs. Methods, 53(4):424--429, Apr 2011.Google ScholarGoogle ScholarCross RefCross Ref
  30. J. D. Thompson, D. G. Higgins, and T. J. Gibson. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic acids research, 22(22):4673--4680, Nov. 1994.Google ScholarGoogle Scholar
  31. Z. Tu, C. Argmann, K. K. Wong, L. J. Mitnaul, S. Edwards, I. C. Sach, J. Zhu, and E. E. Schadt. Integrating siRNA and protein-protein interaction data to identify an expanded insulin signaling network. Genome Res, 19(6):1057--1067, Jun 2009.Google ScholarGoogle ScholarCross RefCross Ref
  32. A. Vinayagam, U. Stelzl, R. Foulle, S. Plassmann, M. Zenkner, J. Timm, H. E. Assmus, M. A. Andrade-Navarro, and E. E. Wanker. A directed protein interaction network for investigating intracellular signal transduction. Sci Signal, 4(189):rs8, Sep 2011.Google ScholarGoogle Scholar
  33. T. Wada and J. M. Penninger. Mitogen-activated protein kinases in apoptosis regulation. Oncogene, 23(16):2838--2849, Apr 2004.Google ScholarGoogle ScholarCross RefCross Ref
  34. H. S. Wiley. Integrating multiple types of data for signaling research: challenges and opportunities. Sci Signal, 4(160):pe9, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  35. C.-H. Yeang, T. Ideker, and T. Jaakkola. Physical network models. Journal of Computational Biology, 11(2-3):243--262, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  36. W. Zhang and H. T. Liu. Mapk signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res, 12(1):9--18, Mar 2002.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Multiple reference networks improve accuracy of signaling network construction

              Recommendations

              Comments

              Login options

              Check if you have access through your login credentials or your institution to get full access on this article.

              Sign in
              • Published in

                cover image ACM Conferences
                BCB '15: Proceedings of the 6th ACM Conference on Bioinformatics, Computational Biology and Health Informatics
                September 2015
                683 pages
                ISBN:9781450338530
                DOI:10.1145/2808719

                Copyright © 2015 ACM

                Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

                Publisher

                Association for Computing Machinery

                New York, NY, United States

                Publication History

                • Published: 9 September 2015

                Permissions

                Request permissions about this article.

                Request Permissions

                Check for updates

                Qualifiers

                • research-article

                Acceptance Rates

                BCB '15 Paper Acceptance Rate48of141submissions,34%Overall Acceptance Rate254of885submissions,29%

              PDF Format

              View or Download as a PDF file.

              PDF

              eReader

              View online with eReader.

              eReader