skip to main content
10.1145/2809695.2809721acmconferencesArticle/Chapter ViewAbstractPublication PagessensysConference Proceedingsconference-collections
research-article

When Pipelines Meet Fountain: Fast Data Dissemination in Wireless Sensor Networks

Published: 01 November 2015 Publication History

Abstract

This paper presents Pando, a completely contention-free data dissemination protocol for wireless sensor networks. Pando encodes data by Fountain codes and disseminates the rateless stream of encoded packets along the fast and parallel pipelines built on constructive interference and channel diversity. Since every encoded packet contains innovative information to the original data object, Pando avoids duplicate retransmissions and fully exploits the wireless broadcast effect in data dissemination. To transform Pando into a practical system, we devise several techniques, including the integration of Fountain coding with the timing-critical operations of constructive interference and pipelining, a silence based feedback scheme for the one-way pipelined dissemination, and packet-level adaptation of network density and channel diversity. Based on these techniques, Pando can accomplish the data dissemination process entirely over the fast and parallel pipelines. We implement Pando in Contiki and for TelosB sensor motes. We evaluate Pando's performance with various settings on two large-scale open testbeds, Indriya and Flocklab. Our experimental results show that Pando can provide 100% reliability and reduce the dissemination time of the state-of-the-art by 3.5.

References

[1]
S. Alam, S. Sultana, Y. C. Hu, and S. Fahmy. SYREN: Synergistic link correlation-aware and network coding-based dissemination in wireless sensor networks. In IEEE MASCOTS, pages 485--494, 2013.
[2]
A. Boulis, C.-C. Han, and M. B. Srivastava. Design and implementation of a framework for efficient and programmable sensor networks. In ACM MobiSys, pages 187--200, 2003.
[3]
S. Cho, H. Shin, S. Han, H. Cha, and R. Ha. Density-adaptive network reprogramming protocol for wireless sensor networks. Wireless Communications and Mobile Computing, 10(6):857--874, 2010.
[4]
M. Ditzel and K. Langendoen. D3: Data-centric data dissemination in wireless sensor networks. In The European Conference on Wireless Technology, pages 185--188, 2005.
[5]
M. Doddavenkatappa and M. C. Chan. P3: a practical packet pipeline using synchronous transmissions for wireless sensor networks. In ACM/IEEE IPSN, pages 203--214, 2014.
[6]
M. Doddavenkatappa, M. C. Chan, and A. L. Ananda. Indriya: A low-cost, 3d wireless sensor network testbed. In TRIDENTCOM, 2011.
[7]
M. Doddavenkatappa, M. C. Chan, and B. Leong. Splash: Fast data dissemination with constructive interference in wireless sensor networks. In USENIX NSDI, pages 269--282, 2013.
[8]
W. Dong, C. Chen, X. Liu, J. Bu, and Y. Gao. A lightweight and density-aware reprogramming protocol for wireless sensor networks. IEEE Transactions on Mobile Computing, pages 1403--1415, 2011.
[9]
W. Dong, Y. Liu, C. Wang, X. Liu, C. Chen, and J. Bu. Link quality aware code dissemination in wireless sensor networks. In IEEE ICNP, pages 89--98, 2011.
[10]
W. Du, Z. Li, J. C. Liando, and M. Li. From rateless to distanceless: Enabling sparse sensor network deployment in large areas. In ACM SenSys, pages 134--147, 2014.
[11]
P. Dutta, S. Dawson-Haggerty, Y. Chen, C.-J. M. Liang, and A. Terzis. Design and evaluation of a versatile and efficient receiver-initiated link layer for low-power wireless. In ACM SenSys, pages 1--14, 2010.
[12]
F. Ferrari, M. Zimmerling, L. Mottola, and L. Thiele. Low-power wireless bus. In ACM SenSys, pages 1--14, 2012.
[13]
F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh. Efficient network flooding and time synchronization with glossy. In ACM/IEEE IPSN, pages 73--84, 2011.
[14]
Y. Gao, J. Bu, W. Dong, C. Chen, L. Rao, and X. Liu. Exploiting concurrency for efficient dissemination in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, pages 691--700, 2013.
[15]
O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis. Collection tree protocol. In ACM SenSys, pages 1--14, 2009.
[16]
S. Guo, Y. Gu, B. Jiang, and T. He. Opportunistic flooding in low-duty-cycle wireless sensor networks with unreliable links. In ACM MobiCom, pages 133--144, 2009.
[17]
A. Hagedorn, D. Starobinski, and A. Trachtenberg. Rateless Deluge: Over-the-air programming of wireless sensor networks using random linear codes. In ACM/IEEE IPSN, 2008.
[18]
I.-H. Hou, Y.-E. Tsai, T. F. Abdelzaher, and I. Gupta. AdapCode: Adaptive network coding for code updates in wireless sensor networks. In IEEE INFOCOM, 2008.
[19]
J. W. Hui and D. Culler. The dynamic behavior of a data dissemination protocol for network programming at scale. In ACM Sensys, pages 81--94, 2004.
[20]
H. S. Kim, T. F. Abdelzaher, and W. H. Kwon. Dynamic delay-constrained minimum-energy dissemination in wireless sensor networks. ACM Transactions on Embedded Computing Systems, 4(3):679--706, 2005.
[21]
J. Ko, J. Eriksson, N. Tsiftes, S. Dawson-Haggerty, J.-P. Vasseur, M. Durvy, A. Terzis, A. Dunkels, and D. Culler. Industry: beyond interoperability: pushing the performance of sensor network ip stacks. In ACM SenSys, pages 1--11, 2011.
[22]
S. S. Kulkarni and L. Wang. MNP: Multihop network reprogramming service for sensor networks. In IEEE ICDCS, pages 7--16, 2005.
[23]
T.-t. T. Lai, Y.-h. T. Chen, H.-h. Chu, and P. Huang. Pipeprobe: mapping hidden water pipelines. In ACM SenSys, pages 375--376, 2009.
[24]
O. Landsiedel, F. Ferrari, and M. Zimmerling. Chaos: Versatile and efficient all-to-all data sharing and in-network processing at scale. In ACM SenSys, pages 1:1--1:14, 2013.
[25]
I. Leontiadis, P. Costa, and C. Mascolo. Persistent content-based information dissemination in hybrid vehicular networks. In IEEE PerCom, pages 1--10, 2009.
[26]
I. Leontiadis, C. Efstratiou, C. Mascolo, and J. Crowcroft. Senshare: Transforming sensor networks into multi-application sensing infrastructures. In EWSN, pages 65--81, 2012.
[27]
P. Levis, D. Gay, and D. Culler. Active sensor networks. In USENIX NSDI, pages 343--356, 2005.
[28]
P. Levis, N. Patel, D. Culler, and S. Shenker. Trickle: A self regulating algorithm for code propagation and maintenance in wireless sensor networks. In USENIX NSDI, pages 15--28, 2004.
[29]
S. Li, L. Su, Y. Suleimenov, H. Liu, T. Abdelzaher, and G. Chen. Centaur: Dynamic message dissemination over online social networks. In ICCCN, pages 1--8, 2014.
[30]
C.-J. M. Liang, R. Musăloiu-e, and A. Terzis. Typhoon: A reliable data dissemination protocol for wireless sensor networks. In EWSN, pages 268--285. Springer, 2008.
[31]
R. Lim, F. Ferrari, M. Zimmerling, C. Walser, P. Sommer, and J. Beutel. Flocklab: A testbed for distributed, synchronized tracing and profiling of wireless embedded systems. In ACM/IEEE IPSN, pages 153--166, 2013.
[32]
J. Lu and K. Whitehouse. Flash flooding: Exploiting the capture effect for rapid flooding in wireless sensor networks. In IEEE INFOCOM, pages 2491--2499, 2009.
[33]
M. Luby. LT codes. In IEEE FOCS, pages 271--280, 2002.
[34]
D. J. MacKay. Fountain codes. IEE Proceedings-Communications, pages 1062--1068, 2005.
[35]
L. Mottola, G. P. Picco, M. Ceriotti, S. Gună, and A. L. Murphy. Not all wireless sensor networks are created equal: A comparative study on tunnels. ACM Transactions on Sensor Networks, 7(2):1--33, 2010.
[36]
V. Naik, A. Arora, P. Sinha, and H. Zhang. Sprinkler: A reliable and energy efficient data dissemination service for wireless embedded devices. In IEEE RTSS, pages 777--789, 2005.
[37]
B. Pásztor, L. Mottola, C. Mascolo, G. P. Picco, S. Ellwood, and D. Macdonald. Selective reprogramming of mobile sensor networks through social community detection. In EWSN, pages 178--193, 2010.
[38]
B. Raman, K. Chebrolu, S. Bijwe, and V. Gabale. PIP: A connection-oriented, multi-hop, multi-channel tdma-based mac for high throughput bulk transfer. In ACM Sensys, pages 15--28, 2010.
[39]
N. Reijers and K. Langendoen. Efficient code distribution in wireless sensor networks. In ACM WSNA, pages 60--67, 2003.
[40]
M. Rossi, N. Bui, G. Zanca, L. Stabellini, R. Crepaldi, and M. Zorzi. SYNAPSE++: code dissemination in wireless sensor networks using fountain codes. IEEE Transactions on Mobile Computing, pages 1749--1765, 2010.
[41]
S. Santini, B. Ostermaier, and A. Vitaletti. First experiences using wireless sensor networks for noise pollution monitoring. In Proceedings of ACM REALWSN, pages 61--65, 2008.
[42]
M. Sathiamoorthy, K. R. Moghadam, B. Krishnamachari, and F. Bai. Helper node allocation strategies for content dissemination in intermittently connected mobile networks. In IEEE SECON, pages 55--63, 2014.
[43]
B. Sirkeci-Mergen, A. Scaglione, and G. Mergen. Asymptotic analysis of multistage cooperative broadcast in wireless networks. IEEE Transactions on Information Theory, pages 2531--2550, 2006.
[44]
D. Son, B. Krishnamachari, and J. Heidemann. Experimental study of concurrent transmission in wireless sensor networks. In ACM SenSys, pages 237--250, 2006.
[45]
K. Srinivasan, M. Jain, J. I. Choi, T. Azim, E. S. Kim, P. Levis, and B. Krishnamachari. The κ factor: Inferring protocol performance using inter-link reception correlation. In ACM MobiCom, pages 317--328, 2010.
[46]
I. Stoianov, L. Nachman, S. Madden, T. Tokmouline, and M. Csail. PIPENET: A wireless sensor network for pipeline monitoring. In ACM/IEEE IPSN, pages 264--273, 2007.
[47]
T. Zhu, Z. Zhong, T. He and Z.-L. Zhang. Exploring link correlation for efficient flooding in wireless sensor networks. In USENIX NSDI, 2010.
[48]
S. Wang, S. M. Kim, Y. Liu, G. Tan, and T. He. CorLayer: a transparent link correlation layer for energy efficient broadcast. In ACM MobiCom, pages 51--62, 2013.
[49]
S. Wang, G. Tan, Y. Liu, H. Jiang, and T. He. Coding opportunity aware backbone metrics for broadcast in wireless networks. IEEE Transactions on Parallel and Distributed Systems, 25(8):1999--2009, 2014.
[50]
Y. Wang, Y. He, X. Mao, Y. Liu, and X.-Y. Li. Exploiting constructive interference for scalable flooding in wireless networks. IEEE/ACM Transactions on Networking, pages 1880--1889, 2013.
[51]
K. Whitehouse, A. Woo, F. Jiang, J. Polastre, and D. Culler. Exploiting the capture effect for collision detection and recovery. In IEEE EmNetS-II, pages 45--52, 2005.
[52]
Y. Wu, J. Stankovic, T. He, S. Lin, et al. Realistic and efficient multi-channel communications in wireless sensor networks. In INFOCOM, 2008.
[53]
W. Xiao and D. Starobinski. Poster abstract: Exploiting multi-channel diversity to speed up over-the-air programming of wireless sensor networks. In ACM SenSys, pages 292--293. ACM, 2005.
[54]
Z. Zhao, W. Dong, J. Bu, Y. Gu, and C. Chen. Link correlation aware data dissemination in wireless sensor networks. IEEE Transactions on Industrial Electronics, 2015.

Cited By

View all
  • (2024)A Low-Density Parity-Check Coding Scheme for LoRa NetworkingACM Transactions on Sensor Networks10.1145/366592820:4(1-29)Online publication date: 8-Jul-2024
  • (2024)OrchLoc: In-Orchard Localization via a Single LoRa Gateway and Generative Diffusion Model-based FingerprintingProceedings of the 22nd Annual International Conference on Mobile Systems, Applications and Services10.1145/3643832.3661876(304-317)Online publication date: 3-Jun-2024
  • (2024)A computation offloading strategy for multi-access edge computing based on DQUIC protocolThe Journal of Supercomputing10.1007/s11227-024-06176-980:12(18285-18318)Online publication date: 14-May-2024
  • Show More Cited By

Index Terms

  1. When Pipelines Meet Fountain: Fast Data Dissemination in Wireless Sensor Networks

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image ACM Conferences
        SenSys '15: Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems
        November 2015
        526 pages
        ISBN:9781450336314
        DOI:10.1145/2809695
        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Sponsors

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        Published: 01 November 2015

        Permissions

        Request permissions for this article.

        Check for updates

        Author Tags

        1. constructive interference
        2. data dissemination
        3. fountain codes
        4. wireless sensor networks

        Qualifiers

        • Research-article

        Conference

        Acceptance Rates

        SenSys '15 Paper Acceptance Rate 27 of 132 submissions, 20%;
        Overall Acceptance Rate 198 of 990 submissions, 20%

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)23
        • Downloads (Last 6 weeks)4
        Reflects downloads up to 17 Feb 2025

        Other Metrics

        Citations

        Cited By

        View all
        • (2024)A Low-Density Parity-Check Coding Scheme for LoRa NetworkingACM Transactions on Sensor Networks10.1145/366592820:4(1-29)Online publication date: 8-Jul-2024
        • (2024)OrchLoc: In-Orchard Localization via a Single LoRa Gateway and Generative Diffusion Model-based FingerprintingProceedings of the 22nd Annual International Conference on Mobile Systems, Applications and Services10.1145/3643832.3661876(304-317)Online publication date: 3-Jun-2024
        • (2024)A computation offloading strategy for multi-access edge computing based on DQUIC protocolThe Journal of Supercomputing10.1007/s11227-024-06176-980:12(18285-18318)Online publication date: 14-May-2024
        • (2023)Simultaneous Data Dissemination Among WiFi and ZigBee DevicesIEEE/ACM Transactions on Networking10.1109/TNET.2023.324307031:6(2545-2558)Online publication date: Dec-2023
        • (2023)Maximizing Energy Efficiency of Period-Area Coverage With a UAV for Wireless Rechargeable Sensor NetworksIEEE/ACM Transactions on Networking10.1109/TNET.2022.322092731:4(1657-1673)Online publication date: Aug-2023
        • (2022)SpeedCollect: Data Collection Using Synchronous Transmission for Low-Power Heterogeneous Wireless Sensor NetworkProceedings of the 2022 INTERNATIONAL CONFERENCE ON EMBEDDED WIRELESS SYSTEMS AND NETWORKS10.5555/3578948.3578963(156-167)Online publication date: 2-Dec-2022
        • (2022)LLDPCProceedings of the 20th ACM Conference on Embedded Networked Sensor Systems10.1145/3560905.3568547(193-206)Online publication date: 6-Nov-2022
        • (2022)CPU: Cross-Rack-Aware Pipelining Update for Erasure-Coded StorageIEEE Transactions on Cloud Computing10.1109/TCC.2020.303552610:4(2424-2436)Online publication date: 1-Oct-2022
        • (2021)BONDACM Transactions on Sensor Networks10.1145/343995617:2(1-21)Online publication date: 12-Mar-2021
        • (2021)Coexistent Routing and Flooding Using WiFi Packets in Heterogeneous IoT NetworkIEEE/ACM Transactions on Networking10.1109/TNET.2021.310194929:6(2807-2819)Online publication date: Dec-2021
        • Show More Cited By

        View Options

        Login options

        View options

        PDF

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        Figures

        Tables

        Media

        Share

        Share

        Share this Publication link

        Share on social media