skip to main content
research-article

Spintronic PUFs for Security, Trust, and Authentication

Published: 25 April 2016 Publication History

Abstract

We propose spintronic physically unclonable functions (PUFs) to exploit security-specific properties of domain wall memory (DWM) for security, trust, and authentication. We note that the nonlinear dynamics of domain walls (DWs) in the physical magnetic system is an untapped source of entropy that can be leveraged for hardware security. The spatial and temporal randomness in the physical system is employed in conjunction with microscopic and macroscopic properties such as stochastic DW motion, stochastic pinning/depinning, and serial access to realize novel relay-PUF and memory-PUF designs. The proposed PUFs show promising results (∼50% interdie Hamming distance (HD) and 10% to 20% intradie HD) in terms of randomness, stability, and resistance to attacks. We have investigated noninvasive attacks, such as machine learning and magnetic field attack, and have assessed the PUFs resilience.

References

[1]
M. Abramovici and P. Bradley. 2009. Integrated circuit security: New threats and solutions. In Proceedings of the 5th Annual Workshop on Cyber Security and Information Intelligence Research: Cyber Security and Information Intelligence Challenges and Strategies. ACM, 55.
[2]
K. N. Alekseev, G. P. Berman, V. I. Tsifrinovich, and A. M. Frishman. 1992. Dynamical chaos in magnetic systems. Soviet Physics Uspekhi 35, 7, 572.
[3]
A. J. Annunziata, M. C. Gaidis, L. Thomas, C. W. Chien, C. C. Hung, P. Chevalier, et al. 2011. Racetrack memory cell array with integrated magnetic tunnel junction readout. In 2011 International Electron Devices Meeting.
[4]
ASU. 2007. Predictive Technology Model. Retrieved from http://ptm.asu.edu/.
[5]
Supriyo Bandyopadhyay and Marc Cahay. 2008. Introduction to Spintronics. CRC Press, Boca Raton, FL.
[6]
B. Behin-Aein, D. Datta, S. Salahuddin, and S. Datta. 2010. Proposal for an all-spin logic device with built-in memory. Nature Nanotechnology 5, 4, 266--270.
[7]
L. Berger. 1984. Exchange interaction between ferromagnetic domain wall and electric current in very thin metallic films. Journal of Applied Physics 55, 6, 1954--1956.
[8]
M. J. Donahue and D. G. Porter. 1999. OOMMF User's Guide. US Department of Commerce, Technology Administration, National Institute of Standards and Technology.
[9]
A. Driskill-Smith. 2010. Latest advances and future prospects of STT-RAM. In Proceedings of the Non-volatile Memories Workshop.
[10]
R. A. Duine, A. S. Núñez, and A. H. MacDonald. 2007. Thermally assisted current-driven domain-wall motion. Physical Review Letters 98, 5, 056605.
[11]
P. P. Freitas and L. Berger. 1985. Observation of s-d exchange force between domain walls and electric current in very thin permalloy films. Journal of Applied Physics 57, 4, 1266--1269.
[12]
M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. 2009. The WEKA data mining software: an update. ACM SIGKDD Explorations Newsletter 11, 1, 10--18.
[13]
Masamitsu Hayashi. 2006. Current Driven Dynamics of Magnetic Domain Walls in Permalloy Nanowires. PhD dissertation, Stanford University.
[14]
D. G. Hermann and J. P. Nguenang. 2013. Chaos Appearance during Domain Wall Motion under Electronic Transfer in Nanomagnets.
[15]
D. E. Holcomb, W. P. Burleson, and K. Fu. 2009. Power-up SRAM state as an identifying fingerprint and source of true random numbers. IEEE Transactions on Computers 58, 9, 1198--1210.
[16]
A. Iyengar, K. Ramclam, and S. Ghosh. 2014. DWM-PUF: A low-overhead, memory-based security primitive. In Proceedings of the 2014 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST). IEEE, 154--159.
[17]
A. Iyengar, S. Ghosh, and K. Ramclam. 2015. Domain wall magnets for embedded memory and hardware security. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 5, 1 (2015), 40--50.
[18]
J. Jang, J. Park, S. Ghosh, and S. Bhunia. 2015. Self-correcting STTRAM under magnetic field attacks. In 52nd ACM/EDAC/IEEE Design Automation Conference (DAC). IEEE, 1--6.
[19]
M. Jamali, K. J. Lee, and H. Yang. 2012. Metastable magnetic domain wall dynamics. New Journal of Physics 14, 3, 033010.
[20]
B. Jun and P. Kocher. 1999. The Intel Random Number Generator. Cryptography Research Inc. White Paper.
[21]
A. Maiti, J. Casarona, L. McHale, and P. Schaumont. 2010. A large scale characterization of RO-PUF. In Proceedings of the 2010 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST). IEEE, 94--99.
[22]
R. Nebashi, N. Sakimura, Y. Tsuji, S. Fukami, H. Honjo, S. Saito, et al. 2011. A content addressable memory using magnetic domain wall motion cells. In Proceedings of the 2011 Symposium on VLSI Circuits (VLSIC). IEEE, 300--301.
[23]
D. Nikonov and G. Bourianoff. 2006. Taxonomy of spintronics (a zoo of devices). Retrieved from http://nanohub.org/resources/1940.
[24]
H. Okuno. 1997. Chaos and energy loss of nonlinear domain wall motion. Journal of Applied Physics 81, 8, 5233--5235.
[25]
E. Ott. 2002. Chaos in Dynamical Systems. Cambridge University Press.
[26]
E. Oztiirk, G. Hammouri, and B. Sunar. 2008. (March). Towards robust low cost authentication for pervasive devices. In Proceedings of the 6th Annual IEEE International Conference on Pervasive Computing and Communications (PerCom’08). IEEE, 170--178.
[27]
R. Pappu. 2001. Physical One-Way Functions. PhD thesis, Massachusetts Institute of Technology.
[28]
S. S. Parkin, M. Hayashi, and L. Thomas. 2008. Magnetic domain-wall racetrack memory. Science 320, 5873, 190--194.
[29]
J. Rajendran, R. Karri, J. B. Wendt, M. Potkonjak, N. R. McDonald, G. S. Rose, and B. T. Wysocki. 2012. Nanoelectronic solutions for hardware security. IACR Cryptology Eprint Archive 2012, 575.
[30]
G. S. Rose, D. Kudithipudi, G. Khedkar, N. McDonald, B. Wysocki, and L. K. Yan. 2014. Nanoelectronics and hardware security. In Network Science and Cybersecurity. Springer, New York, 105--123.
[31]
M. Rostami, F. Koushanfar, J. Rajendran, and R. Karri. 2013. (November). Hardware security: Threat models and metrics. In Proceedings of the International Conference on Computer-Aided Design. IEEE Press, 819--823.
[32]
Samsung. 2013. SGMI Research Themes & Subjects. Online: http://www.samsung.com/global/business/semiconductor/html/news-events/file/SGMI_Proposal_Guide_and_Format_R1.pdf.
[33]
S. Srinivasan. 2012. All Spin Logic: Modeling Multi-Magnet Networks Interacting Via Spin Currents. PhD dissertation, Purdue University.
[34]
T. Tanamoto, N. Shimomura, S. Ikegawa, M. Matsumoto, S. Fujita, and H. Yoda. 2011. High-speed magnetoresistive random-access memory random number generator using error-correcting code. Japanese Journal of Applied Physics 50, 4S, 04DM01.
[35]
A. Thiaville and Y. Nakatani. 2006. Domain-wall dynamics in nanowiresand nanostrips. In Spin Dynamics in Confined Magnetic Structures III. Springer, Berlin, 161--205.
[36]
P. Tuyls, G. J. Schrijen, B. Škorić, J. Van Geloven, N. Verhaegh, and R. Wolters. 2006. Read-proof hardware from protective coatings. In Cryptographic Hardware and Embedded Systems (CHES’06). Springer, Berlin, 369--383.
[37]
S. X. Wang and A. M. Taratorin. 1999. Magnetic Information Storage Technology: A Volume in the Electromagnetism Series. Academic Press.
[38]
Y. Wang, W. K. Yu, S. Wu, G. Malysa, G. E. Suh, and E. C. Kan. 2012. Flash memory for ubiquitous hardware security functions: True random number generation and device fingerprints. In Proceedings of the 2012 IEEE Symposium on Security and Privacy (SP). IEEE, 33--47.
[39]
S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. Von Molnar, M. L. Roukes, et al. 2001. Spintronics: A spin-based electronics vision for the future. Science 294, 5546, 1488--1495.
[40]
S. H. Yang, K. S. Ryu, and S. Parkin. 2015. Domain-wall velocities of up to 750 m s−1 driven by exchange-coupling torque in synthetic antiferromagnets. Nature Nanotechnology 10, 3 (2015), 221--226.
[41]
J. Zhang, P. M. Levy, S. Zhang, and V. Antropov. 2004. Identification of transverse spin currents in noncollinear magnetic structures. Physical Review Letters 93, 25, 256602.
[42]
Y. Zheng, A. R. Krishna, and S. Bhunia. 2013. (January). ScanPUF: Robust ultralow-overhead PUF using scan chain. In Proceedings of the 2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE, 626--631.
[43]
I. Žutić, J. Fabian, and S. D. Sarma. 2004. Spintronics: Fundamentals and applications. Reviews of Modern Physics, 76, 2, 323.

Cited By

View all
  • (2023)ProHys PUF: A Proteresis - Hysteresis switch based Physical Unclonable FunctionIntegration10.1016/j.vlsi.2022.12.00989(207-216)Online publication date: Mar-2023
  • (2023)Reconfigurable Physically Unclonable Functions Based on Nanoscale Voltage‐Controlled Magnetic Tunnel JunctionsAdvanced Electronic Materials10.1002/aelm.2023001959:8Online publication date: 25-Jun-2023
  • (2021)A Morphable Physically Unclonable Function and True Random Number Generator Using a Commercial Magnetic MemoryJournal of Low Power Electronics and Applications10.3390/jlpea1101000511:1(5)Online publication date: 14-Jan-2021
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Journal on Emerging Technologies in Computing Systems
ACM Journal on Emerging Technologies in Computing Systems  Volume 13, Issue 1
Special Issue on Secure and Trustworthy Computing
January 2017
208 pages
ISSN:1550-4832
EISSN:1550-4840
DOI:10.1145/2917757
  • Editor:
  • Yuan Xie
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Journal Family

Publication History

Published: 25 April 2016
Accepted: 01 July 2015
Revised: 01 May 2015
Received: 01 December 2014
Published in JETC Volume 13, Issue 1

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Domain wall memory
  2. chip authentication
  3. hardware security
  4. magnetic attack
  5. nanowire
  6. physically unclonable function
  7. threat models

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

  • National Science Foundation
  • Semiconductor Research Corporation

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)25
  • Downloads (Last 6 weeks)4
Reflects downloads up to 14 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2023)ProHys PUF: A Proteresis - Hysteresis switch based Physical Unclonable FunctionIntegration10.1016/j.vlsi.2022.12.00989(207-216)Online publication date: Mar-2023
  • (2023)Reconfigurable Physically Unclonable Functions Based on Nanoscale Voltage‐Controlled Magnetic Tunnel JunctionsAdvanced Electronic Materials10.1002/aelm.2023001959:8Online publication date: 25-Jun-2023
  • (2021)A Morphable Physically Unclonable Function and True Random Number Generator Using a Commercial Magnetic MemoryJournal of Low Power Electronics and Applications10.3390/jlpea1101000511:1(5)Online publication date: 14-Jan-2021
  • (2021)CMOS Implementation of a Proteresis-Hysteresis (ProHys) Switch2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)10.1109/MWSCAS47672.2021.9531694(1104-1107)Online publication date: 9-Aug-2021
  • (2020)Hardware Security in Spin-based Computing-in-memoryACM Journal on Emerging Technologies in Computing Systems10.1145/339751316:4(1-18)Online publication date: 27-Aug-2020
  • (2020)Design, Analysis and Application of Embedded Resistive RAM Based Strong Arbiter PUFIEEE Transactions on Dependable and Secure Computing10.1109/TDSC.2018.286642517:6(1232-1242)Online publication date: 1-Nov-2020
  • (2020)A Morphable Physically Unclonable Function and True Random Number Generator using a Commercial Magnetic Memory2020 21st International Symposium on Quality Electronic Design (ISQED)10.1109/ISQED48828.2020.9136975(197-197)Online publication date: Mar-2020
  • (2020)Spin–orbit torque based physical unclonable functionJournal of Applied Physics10.1063/5.0013408128:3Online publication date: 15-Jul-2020
  • (2020)Spin–orbit torque-based reconfigurable physically unclonable functionsApplied Physics Letters10.1063/5.0004089116:19Online publication date: 11-May-2020
  • (2020)Applications of Magnetic Materials and Spintronics in Smart SystemsReference Module in Materials Science and Materials Engineering10.1016/B978-0-12-815732-9.00021-8Online publication date: 2020
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media