skip to main content
research-article

Legolization: optimizing LEGO designs

Published:02 November 2015Publication History
Skip Abstract Section

Abstract

Building LEGO sculptures requires accounting for the target object's shape, colors, and stability. In particular, finding a good layout of LEGO bricks that prevents the sculpture from collapsing (due to its own weight) is usually challenging, and it becomes increasingly difficult as the target object becomes larger or more complex. We devise a force-based analysis for estimating physical stability of a given sculpture. Unlike previous techniques for Legolization, which typically use heuristic-based metrics for stability estimation, our force-based metric gives 1) an ordering in the strength so that we know which structure is more stable, and 2) a threshold for stability so that we know which one is stable enough. In addition, our stability analysis tells us the weak portion of the sculpture. Building atop our stability analysis, we present a layout refinement algorithm that iteratively improves the structure around the weak portion, allowing for automatic generation of a LEGO brick layout from a given 3D model, accounting for color information, required workload (in terms of the number of bricks) and physical stability. We demonstrate the success of our method with real LEGO sculptures built up from a wide variety of 3D models, and compare against previous methods.

Skip Supplemental Material Section

Supplemental Material

References

  1. Baraff, D. 1994. Fast contact force computation for nonpenetrating rigid bodies. In Proc. ACM SIGGRAPH 1994, 23--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Chen, H., and Fang, S. 1998. Fast voxelization of three-dimensional synthetic objects. J. Graph. Tools 3, 4, 33--45. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Clague, K., Agullo, M., and Hassing, L. 2002. LEGO software power tools: with LDraw, MLCad, and LPub. Syngress. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Courtney, T., Bliss, S., and Herrera, A. 2003. Virtual LEGO: the official LDraw.org guide to LDraw tools for Windows. No Starch Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Erleben, K. 2007. Velocity-based shock propagation for multibody dynamics animation. ACM Trans. Graph. 26, 2, 12:1--12:20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Garg, A., Sageman-Furnas, A. O., Deng, B., Yue, Y., Grinspun, E., Pauly, M., and Wardetzky, M. 2014. Wire mesh design. ACM Trans. Graph. (Proc. SIGGRAPH 2014) 33, 4, 66:1--66:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Gascón, J., Zurdo, J. S., and Otaduy, M. A. 2010. Constraint-based simulation of adhesive contact. In Proc. SCA 2010, 39--44. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Gower, R., Heydtmann, A., and Petersen, H. 1998. LEGO: automated model construction. In Proc. 32nd European Study Group with Industry, 81--94.Google ScholarGoogle Scholar
  9. Guendelman, E., Bridson, R., and Fedkiw, R. 2003. Non-convex rigid bodies with stacking. ACM Trans. Graph. (Proc. SIGGRAPH 2003) 22, 3, 871--878. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Hildebrand, K., Bickel, B., and Alexa, M. 2012. crdbrd: shape fabrication by sliding planar slices. Comput. Graph. Forum (Proc. EUROGRAPHICS 2012) 31, 2--3, 583--592. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Hopcroft, J., and Tarjan, R. 1973. Efficient algorithms for graph manipulation. Communications of the ACM 16, 6, 372--378. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Jakob, W. 2010. Mitsuba renderer. http://www.mitsubarenderer.org.Google ScholarGoogle Scholar
  13. Jessiman, J. 1995. LDraw, LEGO CAD software package. http://beta.ldraw.org/.Google ScholarGoogle Scholar
  14. Kaufman, D. M., Edmunds, T., and Pai, D. K. 2005. Fast frictional dynamics for rigid bodies. ACM Trans. Graph. (Proc. SIGGRAPH 2005) 24, 3, 946--956. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Kaufman, D. M., Sueda, S., James, D. L., and Pai, D. K. 2008. Staggered projections for frictional contact in multibody systems. ACM Trans. Graph. (Proc. SIGGRAPH Asia 2008) 27, 5, 164:1--164:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Kilian, M., Flöry, S., Chen, Z., Mitra, N. J., Sheffer, A., and Pottmann, H. 2008. Curved folding. ACM Trans. Graph. (Proc. SIGGRAPH 2008) 27, 3, 75:1--75:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Kim, J.-W., Kang, K.-K., and Lee, J.-H. 2014. Survey on automated LEGO assembly construction. In Proc. WSCG 2014, 89--96.Google ScholarGoogle Scholar
  18. Li, X.-Y., Shen, C.-H., Huang, S.-S., Ju, T., and Hu, S.-M. 2010. Popup: automatic paper architectures from 3D models. ACM Trans. Graph. (Proc. SIGGRAPH 2010) 29, 4, 111:1--111:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Li, X.-Y., Ju, T., Gu, Y., and Hu, S.-M. 2011. A geometric study of v-style pop-ups: theories and algorithms. ACM Trans. Graph. (Proc. SIGGRAPH 2011) 30, 4, 98:1--98:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Mitani, J., and Suzuki, H. 2004. Making papercraft toys from meshes using strip-based approximate unfolding. ACM Trans. Graph. (Proc. SIGGRAPH 2004) 23, 3, 259--263. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Mitra, N. J., and Pauly, M. 2009. Shadow art. ACM Trans. Graph. (Proc. SIGGRAPH Asia 2009) 28, 5, 156:1--156:7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Mori, Y., and Igarashi, T. 2007. Plushie: an interactive design system for plush toys. ACM Trans. Graph. (Proc. SIGGRAPH 2007) 26, 3, 45:1--45:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Mueller, S., Mohr, T., Guenther, K., Frohnhofen, J., and Baudisch, P. 2014. faBrickation: fast 3D printing of functional objects by integrating construction kit building blocks. In Proc. SIGCHI 2014, 3827--3834. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Panozzo, D., Block, P., and Sorkine-Hornung, O. 2013. Designing unreinforced masonry models. ACM Trans. Graph. (Proc. SIGGRAPH 2013) 32, 4, 91:1--91:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Petrovic, P. 2001. Solving the LEGO brick layout problem using evolutionary algorithms. In Proc. NIK 2001.Google ScholarGoogle Scholar
  26. Prévost, R., Whiting, E., Lefebvre, S., and Sorkine-Hornung, O. 2013. Make it stand: Balancing shapes for 3D fabrication. ACM Trans. Graph. (Proc. SIGGRAPH 2013) 32, 4, 81:1--81:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Schulz, A., Shamir, A., Levin, D. I. W., Sitthi-amorn, P., and Matusik, W. 2014. Design and fabrication by example. ACM Trans. Graph. (Proc. SIGGRAPH 2014) 33, 4, 62:1--62:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Schwartzburg, Y., Testuz, R., Tagliasacchi, A., and Pauly, M. 2014. High-contrast computational caustic design. ACM Trans. Graph. (Proc. SIGGRAPH 2014) 33, 4, 74:1--74:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Shigeo, T., Wu, H.-Y., Saw, S. H., Lin, C.-C., and Yen, H.-C. 2011. Optimized topological surgery for unfolding 3D meshes. Comput. Graph. Forum (Proc. Pacific Graphics 2011) 30, 7, 2077--2086.Google ScholarGoogle Scholar
  30. Silva, L. F., Pamplona, V. F., and Comba, J. L. 2009. Legolizer: a real-time system for modeling and rendering LEGO representations of boundary models. In Proc. SIBGRAPI 2009, 17--23. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Skouras, M., Thomaszewski, B., Kaufmann, P., Garg, A., Bickel, B., Grinspun, E., and Gross, M. 2014. Designing inflatable structures. ACM Trans. Graph. (Proc. SIGGRAPH 2014) 33, 4, 63:1--63:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Smith, B., Kaufman, D. M., Vouga, E., Tamstorf, R., and Grinspun, E. 2012. Reflections on simultaneous impact. ACM Trans. Graph. (Proc. SIGGRAPH 2012) 31, 4, 106:1--106:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Song, P., Fu, C.-W., and Cohen-Or, D. 2012. Recursive interlocking puzzles. ACM Trans. Graph. (Proc. SIGGRAPH Asia 2012) 31, 6, 128:1--128:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Stava, O., Vanek, J., Benes, B., Carr, N., and Měch, R. 2012. Stress relief: Improving structural strength of 3D printable objects. ACM Trans. Graph. (Proc. SIGGRAPH 2012) 31, 4, 48:1--48:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Tachi, T. 2010. Origamizing polyhedral surfaces. IEEE TVCG 16, 2, 298--311. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Testuz, R., Schwartzburg, Y., and Pauly, M. 2013. Automatic generation of constructable brick sculptures. In Eurographics 2013 Short papers, 81--84.Google ScholarGoogle Scholar
  37. The LEGO Group, and Google. 2012. Build with Chrome. http://www.buildwithchrome.com/static/map/.Google ScholarGoogle Scholar
  38. The LEGO Group. 2010. Company profile: an introduction to The LEGO Group 2010.Google ScholarGoogle Scholar
  39. The LEGO Group. 2012. LEGO digital designer. http://ldd.lego.com/.Google ScholarGoogle Scholar
  40. Thomaszewski, B., Coros, S., Gauge, D., Megaro, V., Grinspun, E., and Gross, M. 2014. Computational design of linkage-based characters. ACM Trans. Graph. (Proc. SIGGRAPH 2014) 33, 4, 64:1--64:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Umetani, N., Igarashi, T., and Mitra, N. J. 2012. Guided exploration of physically valid shapes for furniture design. ACM Trans. Graph. (Proc. SIGGRAPH 2012) 31, 4, 86:1--86:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. van Zijl, L., and Smal, E. 2008. Cellular automata with cell clustering. In Proc. Automata 2008, 425--440.Google ScholarGoogle Scholar
  43. VidimčE, K., Wang, S.-P., Ragan-Kelley, J., and Matusik, W. 2013. OpenFab: A programmable pipeline for multi-material fabrication. ACM Trans. Graph. (Proc. SIGGRAPH 2013) 32, 4, 136:1--136:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Vouga, E., Höbinger, M., Wallner, J., and Pottmann, H. 2012. Design of self-supporting surfaces. ACM Trans. Graph. (Proc. SIGGRAPH 2012) 31, 4, 87:1--87:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Waßmann, M., and Weicker, K. 2012. Maximum flow networks for stability analysis of LEGO structures. In Proceedings of the 20th Annual European Conference on Algorithms, 813--824. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Weyrich, T., Deng, J., Barnes, C., Rusinkiewicz, S., and Finkelstein, A. 2007. Digital bas-relief from 3D scenes. ACM Trans. Graph. (Proc. SIGGRAPH 2007) 26, 3, 32:1--32:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Whiting, E., Ochsendorf, J., and Durand, F. 2009. Procedural modeling of structurally-sound masonry buildings. ACM Trans. Graph. (Proc. SIGGRAPH Asia 2009) 28, 5, 112:1--112:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Whiting, E., Shin, H., Wang, R., Ochsendorf, J., and Durand, F. 2012. Structural optimization of 3D masonry buildings. ACM Trans. Graph. (Proc. SIGGRAPH Asia 2012) 31, 6, 159:1--159:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Yue, Y., Iwasaki, K., Chen, B.-Y., Dobashi, Y., and Nishita, T. 2012. Pixel art with refracted light by rearrangeable sticks. Comput. Graph. Forum (Proc. EUROGRAPHICS 2012) 31, 2--3, 575--582. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Yue, Y., Iwasaki, K., Chen, B.-Y., Dobashi, Y., and Nishita, T. 2014. Poisson-based continuous surface generation for goal-based caustics. ACM Trans. Graph. (Presented at SIGGRAPH 2014) 33, 3, 31:1--31:7. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Legolization: optimizing LEGO designs

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Graphics
            ACM Transactions on Graphics  Volume 34, Issue 6
            November 2015
            944 pages
            ISSN:0730-0301
            EISSN:1557-7368
            DOI:10.1145/2816795
            Issue’s Table of Contents

            Copyright © 2015 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 2 November 2015
            Published in tog Volume 34, Issue 6

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader