skip to main content
research-article

Perceptual models of preference in 3D printing direction

Published:02 November 2015Publication History
Skip Abstract Section

Abstract

This paper introduces a perceptual model for determining 3D printing orientations. Additive manufacturing methods involving low-cost 3D printers often require robust branching support structures to prevent material collapse at overhangs. Although the designed shape can successfully be made by adding supports, residual material remains at the contact points after the supports have been removed, resulting in unsightly surface artifacts. Moreover, fine surface details on the fabricated model can easily be damaged while removing supports. To prevent the visual impact of these artifacts, we present a method to find printing directions that avoid placing supports in perceptually significant regions. Our model for preference in 3D printing direction is formulated as a combination of metrics including area of support, visual saliency, preferred viewpoint and smoothness preservation. We develop a training-and-learning methodology to obtain a closed-form solution for our perceptual model and perform a large-scale study. We demonstrate the performance of this perceptual model on both natural and man-made objects.

Skip Supplemental Material Section

Supplemental Material

References

  1. Alexander, P., Allen, S., and Dutta, D. 1998. Part orientation and build cost determination in layered manufacturing. Computer-Aided Design 2, 3, 343--356.Google ScholarGoogle ScholarCross RefCross Ref
  2. Chalasani, K., Jones, L., and Roscoe, L. 1995. Support generation for fused deposition modeling. In Proceedings of 1995 Symposium on Solid Freeform Fabrication, 229--241.Google ScholarGoogle Scholar
  3. Chen, Y., Li, K., and Qian, X. 2013. Direct geometry processing for tele-fabrication. ASME Journal of Computing and Information Science in Engineering 13, 4, 041002.Google ScholarGoogle ScholarCross RefCross Ref
  4. Cheng, W., Fuh, J., Nee, A., Wong, Y., Loh, H., and Miyazawa, T. 1995. Multi-objective optimization of part-building orientation in stereolithography. Rapid Prototyping Journal 1, 4, 12--23.Google ScholarGoogle ScholarCross RefCross Ref
  5. Chorowski, J., Wang, J., and Zurada, J. M. 2014. Review and performance comparison of svm-and elm-based classifiers. Neurocomputing 128, 507--516. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Cochocki, A., and Unbehauen, R. 1993. Neural Networks for Optimization and Signal Processing. John Wiley & Sons, Inc. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Dong, Y., Wang, J., Pellacini, F., Tong, X., and Guo, B. 2010. Fabricating spatially-varying subsurface scattering. ACM Trans. Graph. 29, 4, 62:1--62:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Dumas, J., Hergel, J., and Lefebvre, S. 2014. Bridging the gap: Automated steady scaffoldings for 3d printing. ACM Trans. Graph. 33, 4 (July), 98:1--98:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Faure, F., Barbier, S., Allard, J., and Falipou, F. 2008. Image-based collision detection and response between arbitrary volume objects. In Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, SCA '08, 155--162. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Hearst, M., Dumais, S., Osman, E., Platt, J., and Scholkopf, B. 1998. Support vector machines. IEEE Intelligent Systems and their Applications 13, 4, 18--28. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Herholz, P., Matusik, W., and Alexa, M. 2015. Approximating free-form geometry with height fields for manufacturing. Computer Graphics Forum (Proc. of Eurographics) 34, 2, 239--251. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Hildebrand, K., Bickel, B., and Alexa, M. 2013. Orthogonal slicing for additive manufacturing. Computers & Graphics 37, 6, 669--675. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Hu, R., Li, H., Zhang, H., and Cohen-Or, D. 2014. Approximate pyramidal shape decomposition. ACM Transactions on Graphics (Proc. of SIGGRAPH Asia 2014) 33, 6, 213:1--213:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Hu, K., Jin, S., and Wang, C. 2015. Support slimming for single material based additive manufacturing. Computer-Aided Design 65, 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Huang, G.-B., Chen, L., and Siew, C.-K. 2006. Universal approximation using incremental constructive feedforward networks with random hidden nodes. Neural Networks, IEEE Transactions on 17, 4, 879--892. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Huang, G.-B., Zhu, Q.-Y., and Siew, C.-K. 2006. Extreme learning machine: theory and applications. Neurocomputing 70, 1, 489--501.Google ScholarGoogle ScholarCross RefCross Ref
  17. Huang, G.-B., Ding, X., and Zhou, H. 2010. Optimization method based extreme learning machine for classification. Neurocomputing 74, 1, 155--163. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Huang, G.-B., Wang, D. H., and Lan, Y. 2011. Extreme learning machines: a survey. International Journal of Machine Learning and Cybernetics 2, 2, 107--122.Google ScholarGoogle ScholarCross RefCross Ref
  19. Huang, G.-B., Zhou, H., Ding, X., and Zhang, R. 2012. Extreme learning machine for regression and multiclass classification. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on 42, 2, 513--529. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Huang, G., Huang, G.-B., Song, S., and You, K. 2015. Trends in extreme learning machines: A review. Neural Networks 61, 32--48.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Kulkarni, P., Marsan, A., and Dutta, D. 2000. A review of process planning techniques in layered manufacturing. Rapid Prototyping Journal 6, 1, 18--35.Google ScholarGoogle ScholarCross RefCross Ref
  22. Lan, P.-T., Chou, S.-Y., Chen, L.-L., and Gemmill, D. 1997. Determining fabrication orientations for rapid prototyping with stereolithography apparatus. Computer-Aided Design 29, 1, 53--62.Google ScholarGoogle ScholarCross RefCross Ref
  23. Lan, Y., Dong, Y., Pellacini, F., and Tong, X. 2013. Bi-scale appearance fabrication. ACM Trans. Graph. 32, 4, 145:1--145:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Lee, C. H., Varshney, A., and Jacobs, D. W. 2005. Mesh saliency. ACM Trans. Graph. 24, 3 (July), 659--666. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Leung, Y.-S., and Wang, C. 2013. Conservative sampling of solids in image space. IEEE Comput. Graph. Appl. 33, 1 (Jan.), 32--43. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Levya, G. N., Schindela, R., and Kruth, J. P. 2003. Rapid manufacturing and rapid tooling with layer manufacturing {(LM)} technologies, state of the art and future perspectives. {CIRP} Annals - Manufacturing Technology 52, 2, 589--609.Google ScholarGoogle Scholar
  27. Liu, L., Shamir, A., Wang, C., and Whiting, E. 2014. 3d printing oriented design: Geometry and optimization. In SIGGRAPH Asia 2014 Courses, ACM, New York, NY, USA, SA '14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Luo, L., Baran, I., Rusinkiewicz, S., and Matusik, W. 2012. Chopper: Partitioning models into 3D-printable parts. ACM Transactions on Graphics (Proc. SIGGRAPH Asia) 31, 6 (Dec.). Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Majhi, J., Janardan, R., Smid, M., and Schwerdt, J. 1998. Multi-criteria geometric optimization problems in layered manufacturing. In Proceedings of the fourteenth annual symposium on Computational geometry, ACM, 19--28. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Masood, S., and Rattanawong, W. 2002. A generic part orientation system based on volumetric error in rapid prototyping. The International Journal of Advanced Manufacturing Technology 19, 3, 209--216.Google ScholarGoogle ScholarCross RefCross Ref
  31. Otsu, N. 1979. A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man and Cybernetics 9, 1, 62--66.Google ScholarGoogle ScholarCross RefCross Ref
  32. Padhye, N., and Deb, K. 2011. Multi-objective optimisation and multi-criteria decision making in SLS using evolutionary approaches. Rapid Prototyping Journal 17, 6, 458--478.Google ScholarGoogle ScholarCross RefCross Ref
  33. Papas, M., Regg, C., Jarosz, W., Bickel, B., Jackson, P., Matusik, W., Marschner, S., and Gross, M. 2013. Fabricating translucent materials using continuous pigment mixtures. ACM Trans. Graph. 32, 4, 146:1--146:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Podolak, J., Shilane, P., Golovinskiy, A., Rusinkiewicz, S., and Funkhouser, T. 2006. A planar-reflective symmetry transform for 3d shapes. ACM Trans. Graph. 25, 3, 549--559. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Rhodes, G., Proffitt, F., Grady, J. M., and Sumich, A. 1998. Facial symmetry and the perception of beauty. Psychonomic Bulletin and Review 5, 4, 659--669.Google ScholarGoogle ScholarCross RefCross Ref
  36. Sachs, E., Cima, M., Williams, P., Brancazio, D., and Cornie, J. 1992. Three dimensional printing: Rapid tooling and prototypes directly from a CAD model. ASME Journal of Engineering for Industry 114, 4, 481--488.Google ScholarGoogle ScholarCross RefCross Ref
  37. Schüller, C., Panozzo, D., and Sorkine-Hornung, O. 2014. Appearance-mimicking surfaces. ACM Trans. Graph. 33, 6, 216:1--216:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Secord, A., Lu, J., Finkelstein, A., Singh, M., and Nealen, A. 2011. Perceptual models of viewpoint preference. ACM Trans. Graph. 30, 5 (Oct.), 109:1--109:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Strano, G., Hao, L., Everson, R., and Evans, K. 2013. A new approach to the design and optimisation of support structures in additive manufacturing. The International Journal of Advanced Manufacturing Technology 66, 9--12, 1247--1254.Google ScholarGoogle ScholarCross RefCross Ref
  40. Umetani, N., and Schmidt, R. 2013. Cross-sectional structural analysis for 3d printing optimization. In SIGGRAPH Asia 2013 Technical Briefs, 5:1--5:4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Vanek, J., Galicia, J. A. G., and Benes, B. 2014. Clever support: Efficient support structure generation for digital fabrication. Computer Graphics Forum 33, 5, 117--125. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Vidimče, K., Wang, S.-P., Ragan-Kelley, J., and Matusik, W. 2013. Openfab: A programmable pipeline for multi-material fabrication. ACM Trans. Graph. 32, 4, 136:1--136:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Wang, C. C. L., Leung, Y.-S., and Chen, Y. 2010. Solid modeling of polyhedral objects by layered depth-normal images on the gpu. Comput. Aided Des. 42, 6 (June), 535--544. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Wang, W., Wang, T. Y., Yang, Z., Liu, L., Tong, X., Tong, W., Deng, J., Chen, F., and Liu, X. 2013. Cost-effective printing of 3d objects with skin-frame structures. ACM Trans. Graph. 32, 6 (Nov.), 177:1--177:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Wang, W., Chao, H., Tong, J., Yang, Z., Tong, X., Li, H., Liu, X., and Liu, L. 2015. Saliency-preserving slicing optimization for effective 3d printing. Computer Graphics Forum.Google ScholarGoogle Scholar
  46. Xie, Z., Xu, K., Liu, L., and Xiong, Y. 2014. 3d shape segmentation and labeling via extreme learning machine. Computer Graphics Forum 33, 5, 85--95. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Xie, Z., Xu, K., Shan, W., Liu, L., Xiong, Y., and Huang, H. 2015. Projective feature learning for 3d shapes with multi-view depth images. Computer Graphics Forum (Proc. of Pacific Graphics 2015) 34, 6, to appear.Google ScholarGoogle Scholar

Index Terms

  1. Perceptual models of preference in 3D printing direction

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 34, Issue 6
          November 2015
          944 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/2816795
          Issue’s Table of Contents

          Copyright © 2015 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 2 November 2015
          Published in tog Volume 34, Issue 6

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader