skip to main content
research-article

Break Ames room illusion: depth from general single images

Published: 02 November 2015 Publication History

Abstract

Photos compress 3D visual data to 2D. However, it is still possible to infer depth information even without sophisticated object learning. We propose a solution based on small-scale defocus blur inherent in optical lens and tackle the estimation problem by proposing a non-parametric matching scheme for natural images. It incorporates a matching prior with our newly constructed edgelet dataset using a non-local scheme, and includes semantic depth order cues for physically based inference. Several applications are enabled on natural images, including geometry based rendering and editing.

References

[1]
Afonso, M. V., Bioucas-Dias, J. M., and Figueiredo, M. A. 2010. Fast image recovery using variable splitting and constrained optimization. TIP 19, 9, 2345--2356.
[2]
Bae, S., and Durand, F. 2007. Defocus magnification. Computer Graphics Forum 26, 3, 571--579.
[3]
Chakrabarti, A., Zickler, T., and Freeman, W. T. 2010. Analyzing spatially-varying blur. In CVPR, 2512--2519.
[4]
Chen, Q., and Koltun, V. 2013. A simple model for intrinsic image decomposition with depth cues. In ICCV, 241--248.
[5]
Cossairt, O., Zhou, C., and Nayar, S. 2010. Diffusion coded photography for extended depth of field. TOG 29, 4, 31.
[6]
Eigen, D., Puhrsch, C., and Fergus, R. 2014. Depth map prediction from a single image using a multi-scale deep network. In NIPS, 2366--2374.
[7]
Elder, J. H., and Zucker, S. W. 1998. Local scale control for edge detection and blur estimation. TPAMI 20, 7, 699--716.
[8]
Hoiem, D., Stein, A. N., Efros, A. A., and Hebert, M. 2007. Recovering occlusion boundaries from a single image. In ICCV, 1--8.
[9]
Jia, J., Sun, J., Tang, C.-K., and Shum, H.-Y. 2006. Drag-and-drop pasting. TOG 25, 3, 631--637.
[10]
Karsch, K., Liu, C., and Kang, S. B. 2012. Depth extraction from video using non-parametric sampling. In ECCV, 775--788.
[11]
Khoshelham, K., and Elberink, S. O. 2012. Accuracy and resolution of kinect depth data for indoor mapping applications. Sensors 12, 2, 1437--1454.
[12]
Ladicky, L., Shi, J., and Pollefeys, M. 2014. Pulling things out of perspective. In CVPR, 89--96.
[13]
Levin, A., Fergus, R., Durand, F., and Freeman, W. T. 2007. Image and depth from a conventional camera with a coded aperture. TOG 26, 3, 70.
[14]
Liang, C.-K., Lin, T.-H., Wong, B.-Y., Liu, C., and Chen, H. H. 2008. Programmable aperture photography: Multiplexed light field acquisition. TOG 27, 3, 55.
[15]
Maini, R., and Sohal, J. 2006. Performance evaluation of prewitt edge detector for noisy images. GVIP Journal 6, 3, 39--46.
[16]
Muja, M., and Lowe, D. G. 2009. Fast approximate nearest neighbors with automatic algorithm configuration. In International Conference on Computer Vision Theory and Application, 331--340.
[17]
Rhemann, C., Hosni, A., Bleyer, M., Rother, C., and Gelautz, M. 2011. Fast cost-volume filtering for visual correspondence and beyond. In CVPR, IEEE, 3017--3024.
[18]
Rother, C., Kolmogorov, V., and Blake, A. 2004. Grabcut: Interactive foreground extraction using iterated graph cuts. TOG 23, 3, 309--314.
[19]
Saxena, A., Chung, S. H., and Ng, A. Y. 2005. Learning depth from single monocular images. In NIPS, 1--8.
[20]
Saxena, A., Sun, M., and Ng, A. 2009. Make3d: Learning 3d scene structure from a single still image. TPAMI 31, 5, 824--840.
[21]
Scharstein, D., and Szeliski, R. 2002. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. IJCV 47, 1--3, 7--42.
[22]
Schechner, Y. Y., and Kiryati, N. 2000. Depth from defocus vs. stereo: How different really are they? IJCV 39, 2, 141--162.
[23]
Shi, J., Xu, L., and Jia, J. 2015. Just noticeable defocus blur detection and estimation. In CVPR, 1--8.
[24]
Su, H., Huang, Q., Mitra, N. J., Li, Y., and Guibas, L. 2014. Estimating image depth using shape collections. TOG 33, 4, 37.
[25]
Subbarao, M., and Surya, G. 1994. Depth from defocus: a spatial domain approach. IJCV 13, 3, 271--294.
[26]
Tai, Y.-W., and Brown, M. S. 2009. Single image defocus map estimation using local contrast prior. In ICIP, 1797--1800.
[27]
Veeraraghavan, A., Raskar, R., Agrawal, A., Mohan, A., and Tumblin, J. 2007. Dappled photography: Mask enhanced cameras for heterodyned light fields and coded aperture refocusing. TOG 26, 3, 69.
[28]
Watanabe, M., and Nayar, S. K. 1998. Rational filters for passive depth from defocus. IJCV 27, 3, 203--225.
[29]
Wu, T.-P., Sun, J., Tang, C.-K., and Shum, H.-Y. 2008. Interactive normal reconstruction from a single image. TOG 27, 5, 119.
[30]
Xu, L., Yan, Q., and Jia, J. 2013. A sparse control model for image and video editing. TOG 32, 6, 197.
[31]
Zhou, C., and Nayar, S. 2009. What are good apertures for defocus deblurring? In ICCP, 1--8.
[32]
Zhou, C., Lin, S., and Nayar, S. 2009. Coded aperture pairs for depth from defocus. In ICCV, 325--332.
[33]
Zhu, X., Cohen, S., Schiller, S., and Milanfar, P. 2013. Estimating spatially varying defocus blur from a single image. TIP 22, 12, 4879--4891.
[34]
Zhuo, S., and Sim, T. 2011. Defocus map estimation from a single image. Pattern Recognition 44, 9, 1852--1858.
[35]
Ziou, D., and Deschênes, F. 2001. Depth from defocus estimation in spatial domain. CVIU 81, 2, 143--165.

Cited By

View all
  • (2024)Instant-SFH: Non-Iterative Sparse Fourier Holograms Using Perlin NoiseSensors10.3390/s2422735824:22(7358)Online publication date: 18-Nov-2024
  • (2024)Photorealistic attention style transfer network for architectural photography photosScientific Reports10.1038/s41598-024-81249-614:1Online publication date: 28-Nov-2024
  • (2024)Large-scale Monocular Depth Estimation in the WildEngineering Applications of Artificial Intelligence10.1016/j.engappai.2023.107189127:PAOnline publication date: 1-Feb-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 34, Issue 6
November 2015
944 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/2816795
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 02 November 2015
Published in TOG Volume 34, Issue 6

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. depth from defocus
  2. out-of-focus
  3. single-image depth
  4. small-blur estimation

Qualifiers

  • Research-article

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)62
  • Downloads (Last 6 weeks)4
Reflects downloads up to 03 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Instant-SFH: Non-Iterative Sparse Fourier Holograms Using Perlin NoiseSensors10.3390/s2422735824:22(7358)Online publication date: 18-Nov-2024
  • (2024)Photorealistic attention style transfer network for architectural photography photosScientific Reports10.1038/s41598-024-81249-614:1Online publication date: 28-Nov-2024
  • (2024)Large-scale Monocular Depth Estimation in the WildEngineering Applications of Artificial Intelligence10.1016/j.engappai.2023.107189127:PAOnline publication date: 1-Feb-2024
  • (2024)Deep Depth from Focal Stack with Defocus Model for Camera-Setting InvarianceInternational Journal of Computer Vision10.1007/s11263-023-01964-x132:6(1970-1985)Online publication date: 1-Jun-2024
  • (2023)NeX360: Real-Time All-Around View Synthesis With Neural Basis ExpansionIEEE Transactions on Pattern Analysis and Machine Intelligence10.1109/TPAMI.2022.321795745:6(7611-7624)Online publication date: 5-May-2023
  • (2023)A Novel Defocus-Blur Region Detection Approach Based on DCT Feature and PCNN StructureIEEE Access10.1109/ACCESS.2023.330982011(94945-94961)Online publication date: 2023
  • (2023)Defocus to focus: Photo-realistic bokeh rendering by fusing defocus and radiance priorsInformation Fusion10.1016/j.inffus.2022.08.02389(320-335)Online publication date: Jan-2023
  • (2023)Vision UFormer: Long-range monocular absolute depth estimationComputers & Graphics10.1016/j.cag.2023.02.003111(180-189)Online publication date: Apr-2023
  • (2023)Sparse depth densification for monocular depth estimationMultimedia Tools and Applications10.1007/s11042-023-15757-483:5(14821-14838)Online publication date: 11-Jul-2023
  • (2022)360MonoDepth: High-Resolution 360° Monocular Depth Estimation2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)10.1109/CVPR52688.2022.00374(3752-3762)Online publication date: Jun-2022
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media