skip to main content
research-article

Random Walks That Find Perfect Objects and the Lovász Local Lemma

Published: 21 July 2016 Publication History

Abstract

We give an algorithmic local lemma by establishing a sufficient condition for the uniform random walk on a directed graph to reach a sink quickly. Our work is inspired by Moser’s entropic method proof of the Lovász Local Lemma (LLL) for satisfiability and completely bypasses the Probabilistic Method formulation of the LLL. In particular, our method works when the underlying state space is entirely unstructured. Similarly to Moser’s argument, the key point is that the inevitability of reaching a sink is established by bounding the entropy of the walk as a function of time.

References

[1]
Dimitris Achlioptas and Fotis Iliopoulos. 2014. Random walks that find perfect objects and the Lovász local lemma. In 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia, PA, October 18--21, 2014. IEEE Computer Society, 494--503. FOCS.2014.59
[2]
Louigi Addario-Berry, Robert E. L. Aldred, Ketan Dalal, and Bruce A. Reed. 2005. Vertex colouring edge partitions. Journal of Combinatorial Theory, Series B 94, 2, 237--244. j.jctb.2005.01.001
[3]
Noga Alon. 1991. A parallel algorithmic version of the local lemma. Random Structures & Algorithms 2, 4, 367--378.
[4]
József Beck. 1991. An algorithmic approach to the Lovász local lemma. I. Random Structures & Algorithms 2, 4 (1991), 343--365.
[5]
Rodrigo Bissacot, Roberto Fernández, Aldo Procacci, and Benedetto Scoppola. 2011. An improvement of the Lovász local lemma via cluster expansion. Combinatorics, Probability & Computing 20, 5, 709--719.
[6]
Karthekeyan Chandrasekaran, Navin Goyal, and Bernhard Haeupler. 2013. Deterministic algorithms for the Lovász local lemma. SIAM Journal on Computing 42, 6, 2132--2155.
[7]
Artur Czumaj and Christian Scheideler. 2000. Coloring nonuniform hypergraphs: A new algorithmic approach to the general Lovász local lemma. Random Structures & Algorithms 17, 3--4, 213--237.
[8]
Persi Diaconis. 1996. The cutoff phenomenon in finite Markov chains. Proceedings of the National Academy of Sciences 93, 4, 1659--1664.
[9]
Andrzej Dudek and Michael Ferrara. 2015. Extensions of results on rainbow Hamilton cycles in uniform hypergraphs. Graphs and Combinatorics 31, 3, 577--583.
[10]
Andrzej Dudek, Alan M. Frieze, and Andrzej Rucinski. 2012. Rainbow Hamilton cycles in uniform hypergraphs. Electronic Journal of Combinatorics 19, 1, P46.
[11]
Paul Erdős and László Lovász. 1975. Problems and results on 3-chromatic hypergraphs and some related questions. In Infinite and Finite Sets (Colloq., Keszthely, 1973; Dedicated to P. Erdős on his 60th Birthday), Vol. II. North-Holland, Amsterdam, 609--627. Colloq. Math. Soc. János Bolyai, Vol. 10.
[12]
Paul Erdös and Joel Spencer. 1991. Lopsided Lovász local lemma and latin transversals. Discrete Applied Mathematics 30, 2--3, 151--154.
[13]
Bernhard Haeupler, Barna Saha, and Aravind Srinivasan. 2011. New constructive aspects of the Lovász local lemma. Journal of the ACM 58, 6, 28.
[14]
David G. Harris and Aravind Srinivasan. 2013. The Moser-Tardos framework with partial resampling. In 54th Annual IEEE Symposium on Foundations of Computer Science, (FOCS’13), Berkeley, CA. IEEE Computer Society, 469--478.
[15]
David G. Harris and Aravind Srinivasan. 2014. A constructive algorithm for the Lovász local lemma on permutations. In SODA. SIAM, 907--925.
[16]
Nicholas J. A. Harvey and Jan Vondrák. 2015. An algorithmic proof of the Lovász local lemma via resampling oracles. In IEEE 56th Annual Symposium on Foundations of Computer Science (FOCS’15), Berkeley, CA. Venkatesan Guruswami (Ed.). IEEE Computer Society, 1327--1346. FOCS.2015.85
[17]
Rafał Kalinowski, Monika Pilśniak, Jakub Przybyło, and Mariusz Woźniak. 2013. Can colour-blind distinguish colour palettes? The Electronic Journal of Combinatorics 20, 3, P23.
[18]
Kashyap Kolipaka, Mario Szegedy, and Yixin Xu. 2012. A sharper local lemma with improved applications. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, Anupam Gupta, Klaus Jansen, José Rolim, and Rocco Servedio (Eds.). Lecture Notes in Computer Science, Vol. 7408. Springer, Berlin, 603--614.
[19]
Kashyap Babu Rao Kolipaka and Mario Szegedy. 2011. Moser and Tardos meet Lovász. In STOC. ACM, 235--244.
[20]
Linyuan Lu, Austin Mohr, and László Székely. 2013. Quest for negative dependency graphs. In Recent Advances in Harmonic Analysis and Applications. Springer, 243--258.
[21]
Austin Mohr. 2013. Applications of the Lopsided Lovász Local Lemma Regarding Hypergraphs. Ph.D. Dissertation. University of South Carolina, Columbia, SC.
[22]
Michael Molloy and Bruce Reed. 1999. Further algorithmic aspects of the local lemma. In STOC’98. ACM, New York, NY, 524--529.
[23]
Robin A. Moser. 2009. A constructive proof of the Lovász local lemma. In Proceedings of the 2009 ACM International Symposium on Theory of Computing (STOC’09). ACM, New York, NY, 343--350.
[24]
Robin A. Moser and Gábor Tardos. 2010. A constructive proof of the general Lovász local lemma. Journal of the ACM 57, 2, Article 11, 15.
[25]
Christos H. Papadimitriou. 1991. On selecting a satisfying truth assignment. In FOCS. IEEE Computer Society, 163--169.
[26]
Wesley Pegden. 2011. Highly nonrepetitive sequences: Winning strategies from the local lemma. Random Structures & Algorithms 38, 1--2, 140--161.
[27]
Wesley Pegden. 2014. An extension of the Moser-Tardos algorithmic local lemma. SIAM Journal on Discrete Mathematics 28, 2, 911--917.
[28]
James B. Shearer. 1985. On a problem of Spencer. Combinatorica 5, 3, 241--245. 10.1007/BF02579368
[29]
Joel Spencer. 1977. Asymptotic lower bounds for Ramsey functions. Discrete Mathematics 20, 0, 69--76.
[30]
Aravind Srinivasan. 2008. Improved algorithmic versions of the Lovász local lemma. In SODA, Shang-Hua Teng (Ed.). SIAM, 611--620.
[31]
Mario Szegedy. 2013. The Lovász local lemma—a survey. In CSR, Lecture Notes in Computer Science, Andrei A. Bulatov and Arseny M. Shur (Eds.), Vol. 7913. Springer, 1--11.

Cited By

View all
  • (2024)titleCombinatorial Constructions of Separating CodesJournal of Complexity10.1016/j.jco.2024.101906(101906)Online publication date: Oct-2024
  • (2022)Efficiently list‐edge coloring multigraphs asymptotically optimallyRandom Structures & Algorithms10.1002/rsa.2107461:4(724-753)Online publication date: 6-Feb-2022
  • (2021)Sampling constraint satisfaction solutions in the local lemma regimeProceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing10.1145/3406325.3451101(1565-1578)Online publication date: 15-Jun-2021
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Journal of the ACM
Journal of the ACM  Volume 63, Issue 3
September 2016
303 pages
ISSN:0004-5411
EISSN:1557-735X
DOI:10.1145/2957788
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 21 July 2016
Accepted: 01 December 2015
Revised: 01 December 2015
Received: 01 April 2015
Published in JACM Volume 63, Issue 3

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. LLL
  2. Lovász Local Lemma
  3. entropic method

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

  • European Research Council
  • Alfred P. Sloan Foundation
  • NSF

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)16
  • Downloads (Last 6 weeks)3
Reflects downloads up to 18 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)titleCombinatorial Constructions of Separating CodesJournal of Complexity10.1016/j.jco.2024.101906(101906)Online publication date: Oct-2024
  • (2022)Efficiently list‐edge coloring multigraphs asymptotically optimallyRandom Structures & Algorithms10.1002/rsa.2107461:4(724-753)Online publication date: 6-Feb-2022
  • (2021)Sampling constraint satisfaction solutions in the local lemma regimeProceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing10.1145/3406325.3451101(1565-1578)Online publication date: 15-Jun-2021
  • (2020)Oblivious Resampling Oracles and Parallel Algorithms for the Lopsided Lovász Local LemmaACM Transactions on Algorithms10.1145/339203517:1(1-32)Online publication date: 31-Dec-2020
  • (2020)Simple Local Computation Algorithms for the General Lovász Local LemmaProceedings of the 32nd ACM Symposium on Parallelism in Algorithms and Architectures10.1145/3350755.3400250(1-10)Online publication date: 6-Jul-2020
  • (2020)An Algorithmic Proof of the Lovász Local Lemma via Resampling OraclesSIAM Journal on Computing10.1137/18M116717649:2(394-428)Online publication date: 7-Apr-2020
  • (2020)Finding independent transversals efficientlyCombinatorics, Probability and Computing10.1017/S0963548320000127(1-27)Online publication date: 14-May-2020
  • (2020)Directed Lovász local lemma and Shearer’s lemmaAnnals of Mathematics and Artificial Intelligence10.1007/s10472-019-09671-588:1-3(133-155)Online publication date: 1-Mar-2020
  • (2020)New bounds for the Moser‐Tardos distributionRandom Structures & Algorithms10.1002/rsa.2091457:1(97-131)Online publication date: 2-Mar-2020
  • (2019)Oblivious resampling oracles and parallel algorithms for the lopsided lovász local lemmaProceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms10.5555/3310435.3310487(841-860)Online publication date: 6-Jan-2019
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media