skip to main content
10.1145/2820426.2820444acmotherconferencesArticle/Chapter ViewAbstractPublication PageswebmediaConference Proceedingsconference-collections
research-article

Proposal and Implementation of New Trading Strategies for Stock Markets using Web Data

Published: 27 October 2015 Publication History

Abstract

The use of social networks and the Web is growing every day, generating a lot of data that can aggregate value to different applications. In financial market, there is a need to better understand the situations that occur in the capital market, through negotiation strategies and technical indicators that can assist in analysis and investment decisions. This work presents a study of the time series data of historical quotations on assets of BM&FBOVESPA and Web data about investments (e.g., social networks, forums, blogs, and news), with the objective of seeking subsidies that can assist in a better understanding of financial market behavior. Based on the theory of Elliott Wave, we propose several trading strategies, evaluating them in a realistic simulator of the financial market. The results show how the use of distinct indicators, such as the ones that are based on Web data, can help minimizing losses and maximizing the triggers that generate profit.

References

[1]
I. Aldridge. High-frequency trading: a practical guide to algorithmic strategies and trading systems. John Wiley & Sons, 2013.
[2]
R. A. F. Fabio Augusto Leandrin Cichini, Rosani de Castro. Análise do coeficiente de correlação de ações cotadas na bolsa de valores de são paulo. XIII SIMPEP - Bauru, SP, 2006.
[3]
E. B. A. Ferreira. Análise de sentimento em redes sociais utilizando influencia das palavras. Master's thesis, Universidade Federal de Pernambuco, www.cin.ufpe.br/ tg/2010--2/ebaf.pdf, 2010.
[4]
G. d. M. A. Franco Peluti Alencar. Mineração web com predição do comportamento de ativos na bovespa. Master's thesis, Universidade de Brasília, 2011.
[5]
A. J. Frost and R. R. Prechter. Elliott wave principle: key to market behavior. Elliott Wave International, 2005.
[6]
J. S. A. Gomide. Mineração de redes sociais para detecção e previsão de eventos reais. Master's thesis, Universidade Federal de Minas Gerais, Universidade Federal de Minas Gerais (UFMG), 2012.
[7]
O. C. Guarnieri. Um estudo empírico da eficiência da análise técnica como instrumento na predição do comportamento dos preços das ações: O caso embraer. Master's thesis, Curso de Mestrado em Gestão e Desenvolvimento Regional - Universidade de Taubaté., 2006.
[8]
E. Jabbur, E. Silva, D. Castilho, A. Pereira, and H. Brandão. Design and evaluation of automatic agents for stock market intraday trading. In Proceedings of the 2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT) - Volume 03, WI-IAT '14, pages 396--403, Washington, DC, USA, 2014. IEEE Computer Society.
[9]
A. V. Lemos. TOP - Mercado de Valores Imobiliários Brasileiro. Number Capítulo 11 -- Análise de Investimentos. 11.2 Análise Técnica (Teoria de Dow, Elliott, Gráficos e Indicadores Técnicos), 2013.
[10]
T. C. Lin. The new investor. UCLA L. Rev., 60:678--778, 2013.
[11]
B. Liu. Sentiment Analysis and Subjectivity. Segunda Edição, 2010.
[12]
E. J. Machado. Caracterização de dados e proposta de estratégias de comercialização de ativos da bolsa de valores. Master's thesis, Centro Federal de Educação Tecnológica (CEFET-MG), 2014.
[13]
A. J. Menkveld. High frequency trading and the new market makers. Journal of Financial Markets, 16(4):712--740, 2013. High-Frequency Trading.
[14]
J. J. Murphy. Technical analysis of the financial markets a comprehensive guide to trading methods and applications. Technical analysis of the financial markets a comprehensive guide to trading methods and applications., 1999.
[15]
B. E. Palladino. Na Onda das Ações - A Matemática e a Saúde do Seu Lucro com, volume 1. Português, 2008.
[16]
F. A. Roberto Prechter. O Princípio da Onda de Elliott. 1978.
[17]
F. B. e. J. M. Thomas Lopes. Mineração de opiniões aplicada à análise de investimentos. 2008.
[18]
P. R. Vartanian. Comparação entre os índices ibovespa e dow jones industrial average no período da crise de 2008 uma análise de correlação. Revista de Administração Contemporânea, 2012.
[19]
G. M. Walter dos Santos Filho. Observatorio da web: Uma plataforma de monitoração, síntese e visualização de eventos massivos em tempo real. SEMISH, 2010.

Cited By

View all
  • (2023)A Novel Method of Data Element Trading and Asset Value AppreciationHighlights in Business, Economics and Management10.54097/hbem.v16i.1066716(576-583)Online publication date: 2-Aug-2023
  • (2023) Convolutional neural networks applied to data organized as OLAP cubes Expert Systems10.1111/exsy.1345440:10Online publication date: 19-Sep-2023
  • (2018)Using Online Economic News to Predict Trends in Brazilian Stock Market SectorsProceedings of the 24th Brazilian Symposium on Multimedia and the Web10.1145/3243082.3243087(37-44)Online publication date: 16-Oct-2018
  • Show More Cited By

Index Terms

  1. Proposal and Implementation of New Trading Strategies for Stock Markets using Web Data

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Other conferences
      WebMedia '15: Proceedings of the 21st Brazilian Symposium on Multimedia and the Web
      October 2015
      266 pages
      ISBN:9781450339599
      DOI:10.1145/2820426
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Sponsors

      • CYTED: Ciência Y Tecnologia Para El Desarrollo
      • SBC: Brazilian Computer Society
      • FAPEAM: Fundacao de Amparo a Pesquisa do Estado do Amazonas
      • CNPq: Conselho Nacional de Desenvolvimento Cientifico e Tecn
      • CGIBR: Comite Gestor da Internet no Brazil
      • CAPES: Brazilian Higher Education Funding Council

      In-Cooperation

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 27 October 2015

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. data characterization
      2. financial indicators.
      3. stock markets
      4. trading strategies
      5. web 2.0

      Qualifiers

      • Research-article

      Conference

      Webmedia '15
      Sponsor:
      • CYTED
      • SBC
      • FAPEAM
      • CNPq
      • CGIBR
      • CAPES

      Acceptance Rates

      WebMedia '15 Paper Acceptance Rate 21 of 61 submissions, 34%;
      Overall Acceptance Rate 270 of 873 submissions, 31%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)4
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 07 Mar 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2023)A Novel Method of Data Element Trading and Asset Value AppreciationHighlights in Business, Economics and Management10.54097/hbem.v16i.1066716(576-583)Online publication date: 2-Aug-2023
      • (2023) Convolutional neural networks applied to data organized as OLAP cubes Expert Systems10.1111/exsy.1345440:10Online publication date: 19-Sep-2023
      • (2018)Using Online Economic News to Predict Trends in Brazilian Stock Market SectorsProceedings of the 24th Brazilian Symposium on Multimedia and the Web10.1145/3243082.3243087(37-44)Online publication date: 16-Oct-2018
      • (undefined)Convolutional Neural Networks Applied to Data Organized as Olap CubesSSRN Electronic Journal10.2139/ssrn.4127229

      View Options

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media