skip to main content
10.1145/2822013.2822030acmotherconferencesArticle/Chapter ViewAbstractPublication PagesmigConference Proceedingsconference-collections
short-paper

DAVIS: density-adaptive synthetic-vision based steering for virtual crowds

Published:16 November 2015Publication History

ABSTRACT

We present a novel algorithm to model density-dependent behaviours in crowd simulation. Previous work has shown that density is a key factor in governing how pedestrians adapt their behaviour. This paper specifically examines, through analysis of real pedestrian data, how density affects how agents control their rate of change of bearing angle with respect to one another. We extend upon existing synthetic vision based approaches to local collision avoidance and generate pedestrian trajectories that more faithfully represent how real people avoid each other. Our approach is capable of producing realistic human behaviours, particularly in dense, complex scenarios where the amount of time for agents to make decisions is limited.

Skip Supplemental Material Section

Supplemental Material

p79-hughes.mp4

mp4

30.9 MB

References

  1. Berg, J., Guy, S., Lin, M., and Manocha, D. 2011. Reciprocal n-body collision avoidance. In Robotics Research, C. Pradalier, R. Siegwart, and G. Hirzinger, Eds., vol. 70 of Springer Tracts in Advanced Robotics. Springer Berlin Heidelberg, 3--19.Google ScholarGoogle Scholar
  2. Best, A., Narang, S., Curtis, S., and Manocha, D. 2014. Densesense: Interactive crowd simulation using density-dependent filters. In Symposium on Computer Animation, 97--102.Google ScholarGoogle Scholar
  3. Bruneau, J., Dutra, T. B., and Pettré, J. 2014. Following behaviors: A model for computing following distances based on prediction. In Proceedings of the Seventh International Conference on Motion in Games, ACM, New York, NY, USA, MIG '14, 17--24. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Charalambous, P., and Chrysanthou, Y. 2014. The pag crowd: A graph based approach for efficient data-driven crowd simulation. Comput. Graph. Forum 33, 8 (Dec.), 95--108. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Cutting, J. E., Vishton, P. M., and Braren, P. A. 1995. How we avoid collisions with stationary and with moving obstacles. Psychological Review 102, 627--651.Google ScholarGoogle ScholarCross RefCross Ref
  6. Dutra, T. B., Priem, G., Cavalcante-Neto, J. B., Vidal, C. A., and Pettré, J. 2014. Synthetic Vision-based Crowd Simulation: Reactive vs. Reactive Planning Approaches. In Proceedings of the 27th Conference on Computer Animation and Social Agents (CASA 2014).Google ScholarGoogle Scholar
  7. Fiorini, P., and Shillert, Z. 1998. Motion planning in dynamic environments using velocity obstacles. International Journal of Robotics Research 17, 760--772.Google ScholarGoogle ScholarCross RefCross Ref
  8. Golas, A., Narain, R., and Lin, M. 2013. Hybrid long-range collision avoidance for crowd simulation. In Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, ACM, New York, NY, USA, I3D '13, 29--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Guy, S. J., Chhugani, J., Kim, C., Satish, N., Lin, M., Manocha, D., and Dubey, P. 2009. Clearpath: highly parallel collision avoidance for multi-agent simulation. In Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, ACM, New York, NY, USA, SCA '09, 177--187. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Guy, S. J., Chhugani, J., Curtis, S., Dubey, P., Lin, M., and Manocha, D. 2010. Pledestrians: a least-effort approach to crowd simulation. In Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, SCA '10, 119--128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. He, L., and van den Berg, J. 2013. Meso-scale planning for multi-agent navigation. In 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, May 6--10, 2013, 2839--2844.Google ScholarGoogle Scholar
  12. Helbing, D., and Molnár, P. 1995. Social force model for pedestrian dynamics. Phys. Rev. E 51 (May), 4282--4286.Google ScholarGoogle ScholarCross RefCross Ref
  13. Helbing, D., Farkas, I., and Vicsek, T. 2000. Simulating dynamical features of escape panic. Nature, 2000.Google ScholarGoogle Scholar
  14. Kapadia, M., Singh, S., Hewlett, W., and Faloutsos, P. 2009. Egocentric affordance fields in pedestrian steering. In Proceedings of the 2009 Symposium on Interactive 3D Graphics and Games, ACM, New York, NY, USA, I3D '09, 215--223. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Karamouzas, I., Skinner, B., and Guy, S. J. 2014. Universal power law governing pedestrian interactions. Phys. Rev. Lett. 113 (Dec), 238701.Google ScholarGoogle ScholarCross RefCross Ref
  16. Kim, S., Guy, S. J., and Manocha, D. 2013. Velocity-based modeling of physical interactions in multi-agent simulations. In Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation, ACM, New York, NY, USA, SCA '13, 125--133. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Lee, K. H., Choi, M. G., Hong, Q., and Lee, J. 2007. Group behavior from video: a data-driven approach to crowd simulation. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, SCA '07, 109--118. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Lemercier, S., Jelic, A., Kulpa, R., Hua, J., Fehrenbach, J., Degond, P., Appert-Rolland, C., Donikian, S., and Pettr&eacute, J. 2012. Realistic following behaviors for crowd simulation. Comp. Graph. Forum 31, 2pt2 (May), 489--498. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Lerner, A., Chrysanthou, Y., and Lischinski, D. 2007. Crowds by example. Comput. Graph. Forum 26, 3, 655--664.Google ScholarGoogle ScholarCross RefCross Ref
  20. Ondřej, J., Pettré, J., Olivier, A.-H., and Donikian, S. 2010. A synthetic-vision based steering approach for crowd simulation. In ACM SIGGRAPH 2010 papers, ACM, New York, NY, USA, SIGGRAPH '10, 123:1--123:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Pelechano, N., Allbeck, J. M., and Badler, N. I. 2007. Controlling individual agents in high-density crowd simulation. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, SCA '07, 99--108. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Pettré, J., Ondřej, J., Olivier, A.-H., Cretual, A., and Donikian, S. 2009. Experiment-based modeling, simulation and validation of interactions between virtual walkers. In Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, ACM, New York, NY, USA, SCA '09, 189--198. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Reynolds, C., 1999. Steering behaviors for autonomous characters.Google ScholarGoogle Scholar
  24. Singh, S., Kapadia, M., Hewlett, B., Reinman, G., and Faloutsos, P. 2011. A modular framework for adaptive agent-based steering. In Symposium on Interactive 3D Graphics and Games, ACM, New York, NY, USA, I3D '11, 141--150. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Singh, S., Kapadia, M., Reinman, G., and Faloutsos, P. 2011. Footstep navigation for dynamic crowds. In Symposium on Interactive 3D Graphics and Games, ACM, New York, NY, USA, I3D '11, 203--203. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Snape, J., van den Berg, J., Guy, S., and Manocha, D. 2011. The hybrid reciprocal velocity obstacle. Robotics, IEEE Transactions on 27, 4, 696--706. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Treuille, A., Cooper, S., and Popović, Z. 2006. Continuum crowds. In ACM SIGGRAPH 2006 Papers, ACM, New York, NY, USA, SIGGRAPH '06, 1160--1168. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. van den Berg, J., Lin, M. C., and Manocha, D. 2008. Reciprocal velocity obstacles for real-time multi-agent navigation. In IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, IEEE, 1928--1935.Google ScholarGoogle Scholar
  29. van Toll, W. G., Cook, IV, A. F., and Geraerts, R. 2012. Real-time density-based crowd simulation. Comput. Animat. Virtual Worlds 23, 1 (Feb.), 59--69. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Weidmann, U. 1993. Transporttechnik der Fussgänger: transporttechnische Eigenschaften des Fussgängerverkehrs; Literaturauswertung. Schriftenreihe des IVT. IVT.Google ScholarGoogle Scholar
  31. Wolff, M. 1973. Notes on the behavior of pedestrians. People In Places: The Sociology Of The Familiar., 35--48.Google ScholarGoogle Scholar
  32. Wu, Q., Ji, Q., Du, J., and Li, X. 2013. Simulating the local behavior of small pedestrian groups using synthetic-vision based steering approach. In Proceedings of the 12th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and Its Applications in Industry, ACM, New York, NY, USA, VRCAI '13, 41--50. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. DAVIS: density-adaptive synthetic-vision based steering for virtual crowds

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Other conferences
        MIG '15: Proceedings of the 8th ACM SIGGRAPH Conference on Motion in Games
        November 2015
        247 pages
        ISBN:9781450339919
        DOI:10.1145/2822013

        Copyright © 2015 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 16 November 2015

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • short-paper

        Acceptance Rates

        Overall Acceptance Rate-9of-9submissions,100%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader