skip to main content
research-article

Net and Prune: A Linear Time Algorithm for Euclidean Distance Problems

Published: 10 December 2015 Publication History

Abstract

We provide a general framework for getting expected linear time constant factor approximations (and in many cases FPTAS's) to several well known problems in Computational Geometry, such as k-center clustering and farthest nearest neighbor. The new approach is robust to variations in the input problem, and yet it is simple, elegant, and practical. In particular, many of these well studied problems which fit easily into our framework, either previously had no linear time approximation algorithm, or required rather involved algorithms and analysis. A short list of the problems we consider include farthest nearest neighbor, k-center clustering, smallest disk enclosing k points, kth largest distance, kth smallest m-nearest neighbor distance, kth heaviest edge in the MST and other spanning forest type problems, problems involving upward closed set systems, and more. Finally, we show how to extend our framework such that the linear running time bound holds with high probability.

References

[1]
P. K. Agarwal, S. Har-Peled, and K. Varadarajan. 2005. Geometric approximation via coresets. In Combinatorial and Computational Geometry, J. E. Goodman, J. Pach, and E. Welzl (Eds.). Cambridge, New York.
[2]
P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan. 2004. Approximating extent measures of points. J. Assoc. Comput. Mach. 51, 4, 606--635.
[3]
P. K. Agarwal, M. Sharir, and S. Toledo. 1994. Applications of parametric searching in geometric optimization. J. Algorithms 17, 292--318.
[4]
G. Aggarwal, R. Panigrahy, T. Feder, D. Thomas, K. Kenthapadi, S. Khuller, and A. Zhu. 2010. Achieving anonymity via clustering. ACM Trans. Algorithms 6, 3, Article 49, 19 pages.
[5]
B. Aronov and S. Har-Peled. 2008. On approximating the depth and related problems. SIAM J. Comput. 38, 3, 899--921.
[6]
S. Bespamyatnikh and M. Segal. 2002. Fast algorithms for approximating distances. Algorithmica 33, 2, 263--269.
[7]
P. B. Callahan and S. R. Kosaraju. 1995. A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields. J. Assoc. Comput. Mach. 42 (1995), 67--90.
[8]
T. M. Chan. 2008. Well-separated pair decomposition in linear time? Inform. Process. Lett. 107, 5 (2008), 138--141.
[9]
K. L. Clarkson. 1983. Fast algorithms for the all nearest neighbors problem. In Proc. 24th Annu. IEEE Sympos. Found. Comput. Sci. (FOCS). IEEE, 226--232.
[10]
K. L. Clarkson. 1988. Applications of random sampling in computational geometry, II. In Proceedings of the 4th Annual Symposium on Computer Geometry. ACM, New York, 1--11.
[11]
K. L. Clarkson and P. W. Shor. 1989. Applications of random sampling in computational geometry, II. Discrete Comput. Geom. 4, 387--421. http://cm.bell-labs.com/who/clarkson/rs2m.html
[12]
A. Driemel, S. Har-Peled, and C. Wenk. 2012. Approximating the Fréchet distance for realistic curves in near linear time. Discrete Comput. Geom. 48 (2012), 94--127. Issue 1.
[13]
H. ElGindy, H. Everett, and G. Toussaint. 1993. Slicing an ear using prune-and-search. Pattern Recogn. Lett. 14, 9, 719--722.
[14]
A. Ene, B. Raichel, and S. Har-Peled. 2012. Fast clustering with lower bounds: No customer too far, no shop too small. In submission. http://sarielhp.org/papers/12/lbc/.
[15]
J. Erickson. 1995. On the relative complexities of some geometric problems. In Proceedings of the 7th Canadian Conference on Computer Geometry. Carleton University, Ottawa, Canada, 85--90. http://compgeom.cs.uiuc.edu/∼jeffe/pubs/relative.html.
[16]
G. N. Frederickson and D. B. Johnson. 1984. Generalized selection and ranking: Sorted matrices. SIAM J. Comput. 13 (1984), 14--30.
[17]
M. Golin, R. Raman, C. Schwarz, and M. Smid. 1995. Simple randomized algorithms for closest pair problems. Nordic J. Comput. 2 (1995), 3--27.
[18]
T. Gonzalez. 1985. Clustering to minimize the maximum intercluster distance. Theoret. Comput. Sci. 38, 293--306.
[19]
S. Har-Peled. 2001. Clustering motion. In Proceedings of FOCS. IEEE, 84--93. http://sarielhp.org/p/01/cluster/.
[20]
S. Har-Peled. 2004a. Clustering motion. Discrete Comput. Geom. 31, 4 (2004), 545--565. http://cs.uiuc.edu/∼sariel/research/papers/01/cluster/.
[21]
S. Har-Peled. 2004b. No coreset, no cry. In Proceedings of FSTTCS. Springer, 324--335. http://cs.uiuc.edu/∼sariel/papers/02/2slab/.
[22]
S. Har-Peled. 2011. Geometric Approximation Algorithms. Mathematical Surveys and Monographs, Vol. 173. Amer. Math. Soc., Boston, MA, USA.
[23]
S. Har-Peled and A. Kushal. 2007. Smaller coresets for k-median and k-means clustering. Discrete Comput. Geom. 37, 1, 3--19.
[24]
S. Har-Peled and S. Mazumdar. 2004. Coresets for k-median and k-means clustering and their applications. In Proceedings of STOC. ACM, 291--300. http://cs.uiuc.edu/simsariel/research/papers/03/kcoreset/.
[25]
S. Har-Peled and S. Mazumdar. 2005. Fast algorithms for computing the smallest k-enclosing disc. Algorithmica 41, 3 (2005), 147--157. http://cs.uiuc.edu/simsariel/papers/03/min_disk/.
[26]
S. Har-Peled and M. Mendel. 2006. Fast construction of nets in low dimensional metrics, and their applications. SIAM J. Comput. 35, 5 (2006), 1148--1184.
[27]
S. Har-Peled and B. Raichel. 2011. The Fréchet distance revisited and extended. In Proceedings of SoCG. ACM, New York, 448--457. http://sarielhp.org/papers/10/frechet3d/.
[28]
S. Har-Peled and B. Raichel. 2013. Net and Prune: A linear time algorithm for Euclidean distance problems. In Proceedings of STOC. ACM, New York, 605--614. http://cs.uiuc.edu/simsariel/papers/12/aggregate/.
[29]
S. Har-Peled and B. Raichel. 2014. Net and Prune: A linear time algorithm for Euclidean distance problems. CoRR abs/1409.7425 (2014). http://arxiv.org/abs/1409.7425.
[30]
S. Khuller and Y. Matias. 1995. A simple randomized sieve algorithm for the closest-pair problem. Inform. Comput. 118, 34--37.
[31]
R. Krauthgamer and J. R. Lee. 2004. Navigating nets: Simple algorithms for proximity search. In Proceedings of SODA. Society for Industrial and Applied Mathematics, Philadelphia, PA, 798--807.
[32]
C.-Y. Lo, J. Matoušek, and W. L. Steiger. 1994. Algorithms for ham-sandwich cuts. Discrete Comput. Geom. 11, 433--452.
[33]
J. Matoušek, M. Sharir, and E. Welzl. 1996. A subexponential bound for linear programming. Algorithmica 16 (1996), 498--516.
[34]
N. Megiddo. 1983. Applying parallel computation algorithms in the design of serial algorithms. J. Assoc. Comput. Mach. 30, 4 (1983), 852--865.
[35]
N. Megiddo. 1984. Linear programming in linear time when the dimension is fixed. J. Assoc. Comput. Mach. 31 (1984), 114--127.
[36]
R. Motwani and P. Raghavan. 1995. Randomized Algorithms. Cambridge University Press, Cambridge, UK. http://us.cambridge.org/titles/catalogue.asp?isbn=0521474655.
[37]
K. Mulmuley. 1994. Computational Geometry: An Introduction Through Randomized Algorithms. Prentice Hall, Englewood Cliffs, NJ.
[38]
M. O. Rabin. 1976. Probabilistic algorithms. In Algorithms and Complexity: New Directions and Recent Results, J. F. Traub (Ed.). Academic Press, Orlando, FL, USA, 21--39.
[39]
J. Salowe. 1997. Parametric search. In Handbook of Discrete and Computational Geometry, J. E. Goodman and J. O'Rourke (Eds.). CRC Press LLC, Boca Raton, FL, Chapter 37, 683--698.
[40]
A. Schönhage. 1979. On the power of random access machines. In Proc. 6th Internat. Colloq. Automata Lang. Prog. (Lecture Notes Comput. Sci.), Vol. 71. Springer-Verlag, London, UK, 520--529.
[41]
M. Sharir and E. Welzl. 1992. A combinatorial bound for linear programming and related problems. In Proceedings of the 9th Symposium on Theoretical Aspects of Computer Science, Lecture Notes in Computer Science, vol. 577. Springer, 569--579.
[42]
M. Smid. 2000. Closest-point problems in computational geometry. In Handbook of Computational Geometry, J.-R. Sack and J. Urrutia (Eds.). Elsevier, Amsterdam, Netherlands, 877--935.
[43]
R. van Oostrum and R. C. Veltkamp. 2004. Parametric search made practical. Comput. Geom. Theory Appl. 28, 2--3, 75--88.

Cited By

View all

Index Terms

  1. Net and Prune: A Linear Time Algorithm for Euclidean Distance Problems

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Journal of the ACM
    Journal of the ACM  Volume 62, Issue 6
    December 2015
    304 pages
    ISSN:0004-5411
    EISSN:1557-735X
    DOI:10.1145/2856350
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 10 December 2015
    Accepted: 01 September 2015
    Revised: 01 January 2015
    Received: 01 September 2013
    Published in JACM Volume 62, Issue 6

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Clustering
    2. linear time
    3. nets
    4. optimization

    Qualifiers

    • Research-article
    • Research
    • Refereed

    Funding Sources

    • NSF AF awards CCF-0915984 and CCF-1217462

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)35
    • Downloads (Last 6 weeks)10
    Reflects downloads up to 20 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2025)Data-driven invariant set for nonlinear systems with application to command governorsAutomatica10.1016/j.automatica.2024.112010172(112010)Online publication date: Feb-2025
    • (2024)Computing A Well-Representative Summary of Conjunctive Query ResultsProceedings of the ACM on Management of Data10.1145/36958352:5(1-27)Online publication date: 7-Nov-2024
    • (2024)Clustering with faulty centersComputational Geometry: Theory and Applications10.1016/j.comgeo.2023.102052117:COnline publication date: 1-Feb-2024
    • (2023)An ETH-Tight Exact Algorithm for Euclidean TSPSIAM Journal on Computing10.1137/22M146912252:3(740-760)Online publication date: 5-Jun-2023
    • (2022)Stochastic Approximate Algorithms for Uncertain Constrained K-Means ProblemMathematics10.3390/math1001014410:1(144)Online publication date: 4-Jan-2022
    • (2022)A branch-and-bound method for the minimum k−enclosing ball problemOperations Research Letters10.1016/j.orl.2022.02.00750:3(274-280)Online publication date: 1-May-2022
    • (2021)Understanding the different responses from the similarity between displacement and groundwater level time series in Beijing, ChinaNatural Hazards10.1007/s11069-021-05041-9111:1(1-18)Online publication date: 28-Sep-2021
    • (2020)High-Dimensional Approximate r-NetsAlgorithmica10.1007/s00453-019-00664-882:6(1675-1702)Online publication date: 1-Jun-2020
    • (2019)High dimensional clustering with r-netsProceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence10.1609/aaai.v33i01.33013207(3207-3214)Online publication date: 27-Jan-2019
    • (2019)Improved PTAS for the constrained k-means problemJournal of Combinatorial Optimization10.1007/s10878-018-0340-437:4(1091-1110)Online publication date: 1-May-2019
    • Show More Cited By

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media