skip to main content
10.1145/2854065.2854069acmconferencesArticle/Chapter ViewAbstractPublication PagespoplConference Proceedingsconference-collections
research-article
Open Access

Improving automation in interactive theorem provers by efficient encoding of lambda-abstractions

Published:18 January 2016Publication History

ABSTRACT

Hammers are tools for employing external automated theorem provers (ATPs) to improve automation in formal proof assistants. Strong automation can greatly ease the task of developing formal proofs. An essential component of any hammer is the translation of the logic of a proof assistant to the format of an ATP. For- malisms of state-of-the-art ATPs are usually first-order, so some method for eliminating lambda-abstractions is needed. We present an experimental comparison of several combinatory abstraction al- gorithms for HOL(y)Hammer – a hammer for HOL Light. The al- gorithms are compared on problems involving non-trivial lambda- abstractions selected from the HOL Light core library and a library for multivariate analysis. We succeeded in developing algorithms which outperform both lambda-lifting and the simple Scho ̈nfinkel’s algorithm used in Sledgehammer for Isabelle/HOL. This increases the ATPs’ success rate on translated problems, thus enhancing au- tomation in proof assistants.

References

  1. M. Abadi, L. Cardelli, P. Curien, and J. Lévy. Explicit substitutions. Journal of Functional Programming, 1(4):375–416, 1991.Google ScholarGoogle ScholarCross RefCross Ref
  2. S. K. Abdali. An abstraction algorithm for combinatory logic. Journal of Symbolic Logic, 41(1):222–224, 1976.Google ScholarGoogle ScholarCross RefCross Ref
  3. H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North Holland, 2nd edition, 1984.Google ScholarGoogle Scholar
  4. J. C. Blanchette. Automatic Proofs and Refutations for Higher-Order Logic. PhD thesis, Technische Universität München, 2012.Google ScholarGoogle Scholar
  5. J. C. Blanchette, C. Kaliszyk, L. C. Paulson, and J. Urban. Hammering towards QED. Journal of Formalized Reasoning, 2015. (to appear).Google ScholarGoogle Scholar
  6. S. Broda and L. Damas. Compact bracket abstraction in combinatory logic. Journal of Symbolic Logic, 62(3):729–740, 1997.Google ScholarGoogle ScholarCross RefCross Ref
  7. M. W. Bunder. Some improvements to Turner’s algorithm for bracket abstraction. Journal of Symbolic Logic, 55(2):656–669, 1990.Google ScholarGoogle ScholarCross RefCross Ref
  8. M. W. Bunder. Expedited Broda-Damas bracket abstraction. Journal of Symbolic Logic, 65(4):1850–1857, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  9. F. W. Burton. A linear space translation of functional programs to Turner combinators. Information Processing Letters, 14(5):201–204, 1982.Google ScholarGoogle ScholarCross RefCross Ref
  10. H. B. Curry, R. Feys, and W. Craig. Combinatory Logic, volume 1. North-Holland, 1958.Google ScholarGoogle Scholar
  11. Ł. Czajka. On the equivalence of different presentations of Turner’s bracket abstraction algorithm. CoRR, abs/1510.03794, 2015.Google ScholarGoogle Scholar
  12. T. Gauthier and C. Kaliszyk. Premise selection and external provers for HOL4. In X. Leroy and A. Tiu, editors, Proceedings of the 2015 Conference on Certified Programs and Proofs, CPP 2015, Mumbai, India, January 15-17, 2015, pages 49–57. ACM, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. H. Goguen and J. Goubault-Larrecq. Sequent combinators: a Hilbert system for the lambda calculus. Mathematical Structures in Computer Science, 10(1):1–79, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. J. Goubault-Larrecq. Conjunctive types and SKInT. In T. Altenkirch, W. Naraschewski, and B. Reus, editors, Types for Proofs and Programs, International Workshop TYPES ’98, Kloster Irsee, Germany, March 27-31, 1998, Selected Papers, volume 1657 of Lecture Notes in Computer Science, pages 106–120. Springer, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. T. C. Hales. Developments in formal proofs. CoRR, abs/1408.6474, 2014.Google ScholarGoogle Scholar
  16. J. Harrison. The HOL Light theory of Euclidean space. Journal of Automated Reasoning, 50(2):173–190, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. T. Hikita. On the average size of Turner’s translation to combinator programs. Journal of Information Processing, 7(3):164–169, 1984.Google ScholarGoogle Scholar
  18. J. R. Hindley. Basic Simple Type Theory, volume 42 of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. R. J. M. Hughes. Supercombinators: A new implementation method for applicative languages. In LISP and Functional Programming. ACM Press, 1982. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. J. Hurd. An LCF-style interface between HOL and first-order logic. In Automated Deduction - CADE-18, 18th International Conference on Automated Deduction, Copenhagen, Denmark, July 27-30, 2002, Proceedings, pages 134–138, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. S. L. P. Jones. The Implementation of Functional Programming Languages. Prentice-Hall, 1987.Google ScholarGoogle Scholar
  22. M. S. Joy. On the efficient implementation of combinators as an object code for functional programs. PhD thesis, University of East Anglia, 1984.Google ScholarGoogle Scholar
  23. M. S. Joy, V. J. Rayward-Smith, and F. W. Burton. Efficient combinator code. Computer Languages, 10(3/4):211–224, 1985. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. C. Kaliszyk and J. Urban. Learning-assisted automated reasoning with Flyspeck. Journal of Automated Reasoning, 53(2):173–213, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. C. Kaliszyk and J. Urban. HOL(y)Hammer: Online ATP service for HOL light. Mathematics in Computer Science, 9(1):5–22, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  26. R. Kennaway and M. R. Sleep. Variable abstraction in O(n log n) space. Information Processing Letters, 24(5):343–349, 1987. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. R. Kennaway and M. R. Sleep. Director strings as combinators. ACM Trans. Program. Lang. Syst., 10(4):602–626, 1988. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. D. Kesner. The theory of calculi with explicit substitutions revisited. In J. Duparc and T. A. Henzinger, editors, Computer Science Logic, 21st International Workshop, CSL 2007, 16th Annual Conference of the EACSL, Lausanne, Switzerland, September 11-15, 2007, Proceedings, volume 4646 of Lecture Notes in Computer Science, pages 238–252. Springer, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. D. Kühlwein, J. C. Blanchette, C. Kaliszyk, and J. Urban. Mash: Machine learning for Sledgehammer. In S. Blazy, C. Paulin-Mohring, and D. Pichardie, editors, Interactive Theorem Proving - 4th International Conference, ITP 2013, Rennes, France, July 22-26, 2013. Proceedings, volume 7998 of Lecture Notes in Computer Science, pages 35–50. Springer, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. J. Meng and L. C. Paulson. Translating higher-order clauses to firstorder clauses. Journal of Automated Reasoning, 40(1):35–60, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. J. Meng, C. Quigley, and L. C. Paulson. Automation for interactive proof: First prototype. Information and Computation, 204(10):1575– 1596, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. K. H. Rose. Explicit substitution: tutorial & survey. Technical report, BRICS, Department of Computer Science, University of Aarhus, 1996.Google ScholarGoogle Scholar
  33. M. Schönfinkel. Über die Bausteine der mathematischen Logik. Mathematische Annalen, 92:305–316, 1924.Google ScholarGoogle ScholarCross RefCross Ref
  34. F. Sinot, M. Fernández, and I. Mackie. Efficient reductions with director strings. In R. Nieuwenhuis, editor, Rewriting Techniques and Applications, 14th International Conference, RTA 2003, Valencia, Spain, June 9-11, 2003, Proceedings, volume 2706 of Lecture Notes in Computer Science, pages 46–60. Springer, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. D. A. Turner. Another algorithm for bracket abstraction. Journal of Symbolic Logic, 44(2):267–270, 1979.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Improving automation in interactive theorem provers by efficient encoding of lambda-abstractions

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        CPP 2016: Proceedings of the 5th ACM SIGPLAN Conference on Certified Programs and Proofs
        January 2016
        196 pages
        ISBN:9781450341271
        DOI:10.1145/2854065

        Copyright © 2016 Owner/Author

        Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 18 January 2016

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        Overall Acceptance Rate18of26submissions,69%

        Upcoming Conference

        POPL '25

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader