skip to main content
research-article

Cyber-Physical Co-Simulation Framework for Smart Cells in Scalable Battery Packs

Published:21 June 2016Publication History
Skip Abstract Section

Abstract

This article introduces a Cyber-physical Co-Simulation Framework (CPCSF) for design and analysis of smart cells that enable scalable battery pack and Battery Management System (BMS) architectures. In contrast to conventional cells in battery packs, where all cells are monitored and controlled centrally, each smart cell is equipped with its own electronics in the form of a Cell Management Unit (CMU). The CMU maintains the cell in a safe and healthy operating state, while system-level battery management functions are performed by cooperation of the smart cells via communication. Here, the smart cells collaborate in a self-organizing fashion without a central controller instance. This enables maximum scalability and modularity, significantly simplifying integration of battery packs. However, for this emerging architecture, system-level design methodologies and tools have not been investigated yet. By contrast, components are developed individually and then manually tested in a hardware development platform. Consequently, the systematic design of the hardware/software architecture of smart cells requires a cyber-physical multi-level co-simulation of the network of smart cells that has to include all the components from the software, electronic, electric, and electrochemical domains. This comprises distributed BMS algorithms running on the CMUs, the communication network, control circuitry, cell balancing hardware, and battery cell behavior. For this purpose, we introduce a CPCSF that enables rapid design and analysis of smart cell hardware/software architectures. Our framework is then applied to investigate request-driven active cell balancing strategies that make use of the decentralized system architecture. In an exhaustive analysis on a realistic 21.6kW h Electric Vehicle (EV) battery pack containing 96 smart cells in series, the CPCSF is able to simulate hundreds of balancing runs together with all system characteristics, using the proposed request-driven balancing strategies at highest accuracy within an overall time frame of several hours. Consequently, the presented CPCSF for the first time allows us to quantitatively and qualitatively analyze the behavior of smart cell architectures for real-world applications.

References

  1. F. Baronti, G. Fantechi, R. Roncella, and R. Saletti. 2012. Intelligent cell gauge for a hierarchical battery management system. In IEEE Transportation Electrification Conference and Expo (ITEC). 1--5. DOI:http://dx.doi.org/10.1109/ITEC.2012.6243471 Google ScholarGoogle ScholarCross RefCross Ref
  2. F. Baronti, G. Fantechi, R. Roncella, and R. Saletti. 2013. High-efficiency digitally controlled charge equalizer for series-connected cells based on switching converter and super-capacitor. IEEE Trans. Industr. Inform. 9, 2 (2013), 1139--1147. DOI:http://dx.doi.org/10.1109/TII.2012.2223479 Google ScholarGoogle ScholarCross RefCross Ref
  3. F. Baronti, C. Bernardeschi, L. Cassano, A. Domenici, R. Roncella, and R. Saletti. 2014a. Design and safety verification of a distributed charge equalizer for modular li-ion batteries. IEEE Trans. Industr. Inform. 10, 2 (2014), 1003--1011. DOI:http://dx.doi.org/10.1109/TII.2014.2299236 Google ScholarGoogle ScholarCross RefCross Ref
  4. F. Baronti, R. Roncella, and R. Saletti. 2014b. Performance comparison of active balancing techniques for lithium-ion batteries. J. Power Sources 267, 1 (2014), 603--609. DOI:http://dx.doi.org/10.1016/j.jpowsour.2014.05.007 Google ScholarGoogle ScholarCross RefCross Ref
  5. A. C. Baughman and M. Ferdowsi. 2008. Double-tiered switched-capacitor battery charge equalization technique. IEEE Trans. Industr. Electron. 55, 6 (June 2008), 2277--2285. DOI:10.1109/TIE.2008.918401 Google ScholarGoogle ScholarCross RefCross Ref
  6. Bosch. 1991. Controller Area Network, Version 2.0b. Retrieved from http://www.can.bosch.com/.Google ScholarGoogle Scholar
  7. M. Brandl, H. Gall, M. Wenger, V. Lorentz, M. Giegerich, F. Baronti, G. Fantechi, L. Fanucci, R. Roncella, R. Saletti, S. Saponara, A. Thaler, M. Cifrain, and W. Prochazka. 2012. Batteries and battery management systems for electric vehicles. In Proc. of Design, Automation Test in Europe Conference Exhibition (DATE). 971--976. DOI:http://dx.doi.org/10.1109/DATE.2012.6176637 Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. J. Cao, N. Schofield, and A. Emadi. 2008. Battery balancing methods: A comprehensive review. In Proc. of Vehicle Power and Propulsion Conference (VPPC). 1--6. DOI:http://dx.doi.org/10.1109/VPPC.2008.4677669 Google ScholarGoogle ScholarCross RefCross Ref
  9. M. Caspar, T. Eiler, and S. Hohmann. 2014. Comparison of active battery balancing systems. In Proc. of Vehicle Power and Propulsion Conference (VPPC). 1--8. DOI:http://dx.doi.org/10.1109/VPPC.2014.7007027 Google ScholarGoogle ScholarCross RefCross Ref
  10. M. Caspar and S. Hohmann. 2014. Optimal cell balancing with model-based cascade control by duty cycle adaption. In IFAC World Congress, Vol. 19. 10311--10318. DOI:http://dx.doi.org/10.3182/20140824-6-ZA-1003.01613 Google ScholarGoogle ScholarCross RefCross Ref
  11. C. Danielson, F. Borrelli, D. Oliver, D. Anderson, and T. Phillips. 2013. Constrained flow control in storage networks: Capacity maximization and balancing. Automatica 49, 9 (2013), 2612--2621. DOI:http://dx.doi.org/10.1016/j.automatica.2013.05.014 Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. M. Daowd, N. Omar, P. Van Den Bossche, and Joeri Van Mierlo. 2011. Passive and active battery balancing comparison based on MATLAB simulation. In Proc. of Vehicle Power and Propulsion Conference (VPPC). 1--7. DOI:http://dx.doi.org/10.1109/VPPC.2011.6043010 Google ScholarGoogle ScholarCross RefCross Ref
  13. R. Erickson and D. Maksimovic. 2001. Fundamentals of Power Electronics. Springer, Berlin. Google ScholarGoogle ScholarCross RefCross Ref
  14. J. Guerin and W. Liu. 2010. Cell balancing algorithm verification through a simulation model for lithium ion energy storage systems. SAE Publication 2010-01-1079 (2010). DOI:http://dx.doi.org/ 10.4271/2010-01-1079Google ScholarGoogle Scholar
  15. L. Hua, S. Sambamoorthy, S. Shukla, J. Thorp, and L. Mili. 2011. Power system and communication network co-simulation for smart grid applications. In Proc. of Innovative Smart Grid Technologies (ISGT). 1--6. DOI:http://dx.doi.org/10.1109/ISGT.2011.5759166 Google ScholarGoogle ScholarCross RefCross Ref
  16. M. Kauer, S. Narayanaswami, S. Steinhorst, M. Lukasiewycz, S. Chakraborty, and L. Hedrich. 2013. Modular system-level architecture for concurrent cell balancing. In Proc. of the Design Automation Conference (DAC). 155:1--155:10. DOI:http://dx.doi.org/10.1145/2463209.2488926 Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. M. Kauer, S. Narayanaswamy, M. Lukasiewycz, S. Steinhorst, and S. Chakraborty. 2015a. Inductor optimization for active cell balancing using geometric programming. In Proc. of the Conference on Design, Automation and Test in Europe (DATE). 1--4. DOI:http://dx.doi.org/10.7873/DATE.2015.0051 Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. M. Kauer, S. Narayanaswamy, S. Steinhorst, M. Lukasiewycz, and S. Chakraborty. 2015b. Many-to-many active cell balancing strategy design. In Proc. of the Asia and South Pacific Design Automation Conference (ASP-DAC). 267--272. DOI:http://dx.doi.org/10.1109/ASPDAC.2015.7059016 Google ScholarGoogle ScholarCross RefCross Ref
  19. N. Kutkut. 1998. A modular nondissipative current diverter for EV battery charge equalization. In Proc. of Applied Power Electronics Conference and Exposition (APEC), Vol. 2. 686--6902. DOI:http://dx.doi.org/10.1109/APEC.1998.653973 Google ScholarGoogle ScholarCross RefCross Ref
  20. N. Kutkut and D. Divan. 1996. Dynamic equalization techniques for series battery stacks. In Proc. of the International Telecommunications Energy Conference (INTELEC). 514--521. DOI:http://dx.doi.org/ 10.1109/INTLEC.1996.573384 Google ScholarGoogle ScholarCross RefCross Ref
  21. Y. Lee and M. Cheng. 2005. Intelligent control battery equalization for series connected lithium-ion battery strings. IEEE Trans. Indust. Electron. 52, 5 (Oct. 2005), 1297--1307. DOI:http://dx.doi.org/10.1109/TIE.2005.855673 Google ScholarGoogle ScholarCross RefCross Ref
  22. J. Liu, Z. Huang, J. Peng, and J. Wang. 2015. Distributed cooperative voltage equalization for series-connected super-capacitors. In Proc. of the American Control Conference (ACC). 4523--4528. DOI:http://dx.doi.org/10.1109/ACC.2015.7172041 Google ScholarGoogle ScholarCross RefCross Ref
  23. L. Lu, X. Han, J. Li, J. Hua, and M. Ouyang. 2013. A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 226, 0 (2013), 272--288. DOI:http://dx.doi.org/ 10.1016/j.jpowsour.2012.10.060 Google ScholarGoogle ScholarCross RefCross Ref
  24. M. Lukasiewycz, S. Steinhorst, and S. Narayanaswamy. 2014. Verification of balancing architectures for modular batteries. In Proc. of the International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS). 30:1--30:10. DOI:http://dx.doi.org/10.1145/2656075.2656104 Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. S. Moore and P. Schneider. 2001. A review of cell equalization methods for lithium ion and lithium polymer battery systems. SAE Publication 2001-01-0959 (2001). DOI:http://dx.doi.org/10.4271/2001-01-0959 Google ScholarGoogle ScholarCross RefCross Ref
  26. S. Narayanaswamy, S. Steinhorst, M. Lukasiewycz, M. Kauer, and S. Chakraborty. 2014. Optimal dimensioning of active cell balancing architectures. In Proc. of Design, Automation Test in Europe Conference Exhibition (DATE). 140:1--140:6. DOI:http://dx.doi.org/10.7873/DATE.2014.153 Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. A. Otto, S. Rzepka, T. Mager, B. Michel, C. Lanciotti, T. Günther, and O. Kanoun. 2012. Battery management network for fully electrical vehicles featuring smart systems at cell and pack level. In Advanced Microsystems for Automotive Applications 2012, Gereon Meyer (Ed.). Springer, Berlin. DOI:http://dx.doi.org/10.1007/978-3-642-29673-4_1 Google ScholarGoogle ScholarCross RefCross Ref
  28. M. Petricca, D. Shin, A. Bocca, A. Macii, E. Macii, and M. Poncino. 2013. An automated framework for generating variable-accuracy battery models from datasheet information. In Proc. of the International Symposium on Low Power Electronics and Design (ISLPED). 365--370. DOI:http://dx.doi.org/10.1109/ISLPED.2013.6629324 Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. M. Preindl, C. Danielson, and F. Borrelli. 2013. Performance evaluation of battery balancing hardware. In Proc. of the European Control Conference (ECC). 4065--4070.Google ScholarGoogle Scholar
  30. S. Steinhorst, M. Lukasiewycz, S. Narayanaswamy, M. Kauer, and S. Chakraborty. 2014. Smart cells for embedded battery management. In Proc. of the International Conference on Cyber-Physical Systems, Networks, and Applications (CPSNA). 59--64. DOI:http://dx.doi.org/10.1109/CPSNA.2014.22 Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. T. Stuart and W. Zhu. 2009. Fast equalization for large lithium ion batteries. IEEE Aerospace Electron. Syst. Mag. 24, 7 (July 2009), 27--31. DOI:http://dx.doi.org/10.1109/MAES.2009.5208557 Google ScholarGoogle ScholarCross RefCross Ref
  32. Team SimPy. 2015. SimPy Discrete Event Simulation Library for Python. Retrieved from http://simpy.readthedocs.org/.Google ScholarGoogle Scholar

Index Terms

  1. Cyber-Physical Co-Simulation Framework for Smart Cells in Scalable Battery Packs

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Design Automation of Electronic Systems
            ACM Transactions on Design Automation of Electronic Systems  Volume 21, Issue 4
            September 2016
            423 pages
            ISSN:1084-4309
            EISSN:1557-7309
            DOI:10.1145/2939671
            • Editor:
            • Naehyuck Chang
            Issue’s Table of Contents

            Copyright © 2016 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 21 June 2016
            • Accepted: 1 February 2016
            • Revised: 1 December 2015
            • Received: 1 September 2015
            Published in todaes Volume 21, Issue 4

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article
            • Research
            • Refereed

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader