skip to main content
research-article

Subdivision exterior calculus for geometry processing

Published: 11 July 2016 Publication History

Abstract

This paper introduces a new computational method to solve differential equations on subdivision surfaces. Our approach adapts the numerical framework of Discrete Exterior Calculus (DEC) from the polygonal to the subdivision setting by exploiting the refin-ability of subdivision basis functions. The resulting Subdivision Exterior Calculus (SEC) provides significant improvements in accuracy compared to existing polygonal techniques, while offering exact finite-dimensional analogs of continuum structural identities such as Stokes' theorem and Helmholtz-Hodge decomposition. We demonstrate the versatility and efficiency of SEC on common geometry processing tasks including parameterization, geodesic distance computation, and vector field design.

Supplementary Material

ZIP File (a133-degoes-supp.zip)
Supplemental files.
MP4 File (a133.mp4)

References

[1]
Alexa, M., and Wardetzky, M. 2011. Discrete Laplacians on general polygonal meshes. ACM Trans. Graph. 30, 4, Art. 102.
[2]
Arnold, D. N., Falk, R. S., and Winther, R. 2006. Finite element exterior calculus, homological techniques, and applications. Acta Numerica 15, 1--155.
[3]
Auchmann, B., and Kurz, S. 2006. A geometrically defined discrete Hodge operator on simplicial cells. IEEE Trans. on Magnetics 42, 4, 643--646.
[4]
Babuska, I., and Suri, M. 1994. The p and h-p versions of the finite element method: Basic principles and properties. SIAM Review 36, 4, 578--632.
[5]
Back, A., and Sonnendrücker, E. 2014. Finite element Hodge for spline discrete differential forms: Application to the Vlasov-Poisson system. Appl. Numer. Math. 79, 124--136.
[6]
Barendrecht, P. J. 2013. Isogeometric Analysis for Subdivision Surfaces. Master's thesis, Eindhoven University of Technology.
[7]
Bossavit, A., Ed. 1998. Computational Electromagnetism. Academic Press.
[8]
Bossavit, A. 2000. Computational electromagnetism and geometry. (5): The 'Galerkin Hodge'. J. Japan Soc. Appl. Electromagn. & Mech. 8, 2, 203--9.
[9]
Botsch, M., Kobbelt, L., Pauly, M., Alliez, P., and Lévy, B. 2010. Polygon Mesh Processing. AK Peters.
[10]
Buffa, A., Rivas, J., Sangalli, G., and Vázquez, R. 2011. Isogeometric discrete differential forms in three dimensions. SIAM J. Numer. Anal. 49, 2, 818--844.
[11]
Buffa, A., Sangalli, G., and Vázquez, R. 2014. Isogeometric methods for computational electromagnetics: B-spline and T-spline discretizations. J. Comput. Phys. 257, 1291--1320.
[12]
Cirak, F., Scott, M. J., Antonsson, E. K., Ortiz, M., and Schröder, P. 2002. Integrated modeling, finite-element analysis, and engineering design for thin-shell structures using subdivision. Comput. Aided Des. 34, 137--148.
[13]
Cottrell, J. A., Hughes, T. J. R., and Bazilevs, Y. 2009. Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley Publishing.
[14]
Crane, K., de Goes, F., Desbrun, M., and Schröder, P. 2013. Digital geometry processing with discrete exterior calculus. In ACM SIGGRAPH Courses.
[15]
Crane, K., Weischedel, C., and Wardetzky, M. 2013. Geodesics in heat: A new approach to computing distance based on heat flow. ACM Trans. Graph. 32, 5, Art. 152.
[16]
Dahmen, W. 1986. Subdivision algorithms converge quadratically. J. Comput. Appl. Math. 16, 2, 145--158.
[17]
de Goes, F., Memari, P., Mullen, P., and Desbrun, M. 2014. Weighted triangulations for geometry processing. ACM Trans. Graph. 33, 3, Art. 28.
[18]
Desbrun, M., Meyer, M., Schröder, P., and Barr, A. H. 1999. Implicit fairing of irregular meshes using diffusion and curvature flow. ACM SIGGRAPH, 317--324.
[19]
Desbrun, M., Kanso, E., and Tong, Y. 2008. Discrete differential forms for computational modeling. In Discrete Differential Geometry, A. I. Bobenko et al. (Eds), vol. 38 of Oberwolfach Seminars. 287--324.
[20]
Elcott, S., Tong, Y., Kanso, E., Schröder, P., and Desbrun, M. 2007. Stable, circulation-preserving, simplicial fluids. ACM Trans. Graph. 26, 1, Art. 4.
[21]
Fisher, M., Schröder, P., Desbrun, M., and Hoppe, H. 2007. Design of tangent vector fields. ACM Trans. Graph. 26, 3, Art. 56.
[22]
Frankel, T. 2004. The Geometry of Physics: An Introduction. Cambridge University Press.
[23]
Grinspun, E., Krysl, P., and Schröder, P. 2002. CHARMS: A simple framework for adaptive simulation. ACM Trans. Graph. 21, 3, 281--290.
[24]
He, L., Schaefer, S., and Hormann, K. 2010. Parameterizing subdivision surfaces. ACM Trans. Graph. 29, 4, Art. 120.
[25]
Hirani, A. 2003. Discrete Exterior Calculus. PhD thesis, Caltech.
[26]
Hughes, T., Cottrell, J., and Bazilevs, Y. 2005. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194, 39-41, 4135--4195.
[27]
Jüttler, B., Mantzaflaris, A., Perl, R., and Rumpf, M. 2016. On numerical integration in isogeometric subdivision methods for PDEs on surfaces. Comput. Methods Appl. Mech. Eng. 302, 131--146.
[28]
Liu, S., Jacobson, A., and Gingold, Y. 2014. Skinning cubic Bézier splines and Catmull-Clark subdivision surfaces. ACM Trans. Graph. 33, 6, Art. 190.
[29]
Liu, B., Mason, G., Hodgson, J., Tong, Y., and Desbrun, M. 2015. Model-reduced variational fluid simulation. ACM Trans. Graph. 34, 6, Art. 244.
[30]
Loop, C., van Gelder, D., Litke, N., El Guerrab, R., Elmieh, B., and Kraemer, M. 2013. OpenSubdiv from research to industry adoption. In ACM SIGGRAPH Courses.
[31]
Lounsbery, M., DeRose, T. D., and Warren, J. 1997. Multiresolution analysis for surfaces of arbitrary topological type. ACM Trans. Graph. 16, 1, 34--73.
[32]
McCormick, S. F. 1984. Multigrid Methods for Variational Problems: Further Results. SIAM J. Numer. Anal. 21, 2, 255--263.
[33]
Mullen, P., Tong, Y., Alliez, P., and Desbrun, M. 2008. Spectral conformal parameterization. Comput. Graph. Forum 27, 5, 1487--1494.
[34]
Mullen, P., Memari, P., de Goes, F., and Desbrun, M. 2011. HOT: Hodge-optimized triangulations. ACM Trans. Graph. 30, 4, Art. 103.
[35]
Munkres, J. R. 1984. Elements of Algebraic Topology. Addison-Wesley.
[36]
Nguyen, T., Karčiauskas, K., and Peters, J. 2014. A comparative study of several classical, discrete differential and isogeometric methods for solving Poissons equation on the disk. Axioms, 3, 280--299.
[37]
Niessner, M., Loop, C., Meyer, M., and Derose, T. 2012. Feature-adaptive GPU rendering of Catmull-Clark subdivision surfaces. ACM Trans. Graph. 31, 1, Art. 6.
[38]
Riffnaller-Schiefer, A., Augsdörfer, U. H., and Fellner, D. W. 2015. Isogeometric Analysis for Modelling and Design. In Eurographics (short papers).
[39]
Stam, J. 1998. Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values. ACM SIGGRAPH, 395--404.
[40]
Stam, J. 2003. Flows on surfaces of arbitrary topology. ACM Trans. Graph. 22, 3, 724--731.
[41]
Strang, G., and Fix, G. 1973. An Analysis of the Finite Element Method. Wellesley-Cambridge.
[42]
Thomaszewski, B., Wacker, M., and Strasser, W. 2006. A consistent bending model for cloth simulation with corota-tional subdivision finite elements. In Symp. Comp. Anim., 107--116.
[43]
Wang, K., Weiwei, Tong, Y., Desbrun, M., and Schröder, P. 2006. Edge subdivision schemes and the construction of smooth vector fields. ACM Trans. Graph. 25, 3, 1041--1048.
[44]
Wang, K. 2008. A subdivision approach to the construction of smooth differential forms. PhD thesis, Caltech.
[45]
Wardetzky, M., Mathur, S., Kälberer, F., and Grinspun, E. 2007. Discrete Laplace operators: No free lunch. In Symp. Geom. Process., 33--37.
[46]
Warren, J., and Weimer, H. 2001. Subdivision Methods for Geometric Design: A Constructive Approach. Morgan Kaufmann Publishers Inc.
[47]
Whitney, H. 1957. Geometric Integration Theory. Princeton University Press.
[48]
Zhou, K., Huang, X., Xu, W., Guo, B., and Shum, H.-Y. 2007. Direct manipulation of subdivision surfaces on GPUs. ACM Trans. Graph. 26, 3, Art. 91.
[49]
Zorin, D., and Schröder, P. 2000. Subdivision for modeling and animation. In ACM SIGGRAPH Courses.

Cited By

View all
  • (2025) -dimensional discrete exterior discretization of a general wave model in Minkowski spacetime Results in Applied Mathematics10.1016/j.rinam.2024.10052825(100528)Online publication date: Mar-2025
  • (2025)Corrected Laplace–Beltrami Operators for Digital SurfacesJournal of Mathematical Imaging and Vision10.1007/s10851-024-01226-667:2Online publication date: 17-Jan-2025
  • (2024)Fluid Implicit Particles on Coadjoint OrbitsACM Transactions on Graphics10.1145/368797043:6(1-38)Online publication date: 19-Dec-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 35, Issue 4
July 2016
1396 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/2897824
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 11 July 2016
Published in TOG Volume 35, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. discrete differential geometry
  2. discrete exterior calculus
  3. geometry processing
  4. subdivision surfaces

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)57
  • Downloads (Last 6 weeks)11
Reflects downloads up to 14 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2025) -dimensional discrete exterior discretization of a general wave model in Minkowski spacetime Results in Applied Mathematics10.1016/j.rinam.2024.10052825(100528)Online publication date: Mar-2025
  • (2025)Corrected Laplace–Beltrami Operators for Digital SurfacesJournal of Mathematical Imaging and Vision10.1007/s10851-024-01226-667:2Online publication date: 17-Jan-2025
  • (2024)Fluid Implicit Particles on Coadjoint OrbitsACM Transactions on Graphics10.1145/368797043:6(1-38)Online publication date: 19-Dec-2024
  • (2024)A Closest Point Method for PDEs on Manifolds with Interior Boundary Conditions for Geometry ProcessingACM Transactions on Graphics10.1145/367365243:5(1-26)Online publication date: 9-Aug-2024
  • (2024)Mesh Parameterization Meets Intrinsic TriangulationsComputer Graphics Forum10.1111/cgf.1513443:5Online publication date: 31-Jul-2024
  • (2024)Parametric topology optimization design and analysis of additively manufactured joints in spatial grid structuresEngineering Structures10.1016/j.engstruct.2023.117123300(117123)Online publication date: Feb-2024
  • (2024)Digital Calculus Frameworks and Comparative Evaluation of Their Laplace-Beltrami OperatorsDiscrete Geometry and Mathematical Morphology10.1007/978-3-031-57793-2_8(93-106)Online publication date: 15-Apr-2024
  • (2023)Progressive Shell Qasistatics for Unstructured MeshesACM Transactions on Graphics10.1145/361838842:6(1-17)Online publication date: 5-Dec-2023
  • (2023)Discrete Laplacians for General Polygonal and Polyhedral MeshesSIGGRAPH Asia 2023 Courses10.1145/3610538.3614620(1-49)Online publication date: 6-Dec-2023
  • (2023)Surface Simplification using Intrinsic Error MetricsACM Transactions on Graphics10.1145/359240342:4(1-17)Online publication date: 26-Jul-2023
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media