skip to main content
research-article
Open Access
Results Replicated

Accelerated quadratic proxy for geometric optimization

Published:11 July 2016Publication History
Skip Abstract Section

Abstract

We present the Accelerated Quadratic Proxy (AQP) - a simple first-order algorithm for the optimization of geometric energies defined over triangular and tetrahedral meshes.

The main stumbling block of current optimization techniques used to minimize geometric energies over meshes is slow convergence due to ill-conditioning of the energies at their minima. We observe that this ill-conditioning is in large part due to a Laplacian-like term existing in these energies. Consequently, we suggest to locally use a quadratic polynomial proxy, whose Hessian is taken to be the Laplacian, in order to achieve a preconditioning effect. This already improves stability and convergence, but more importantly allows incorporating acceleration in an almost universal way, that is independent of mesh size and of the specific energy considered.

Experiments with AQP show it is rather insensitive to mesh resolution and requires a nearly constant number of iterations to converge; this is in strong contrast to other popular optimization techniques used today such as Accelerated Gradient Descent and Quasi-Newton methods, e.g., L-BFGS. We have tested AQP for mesh deformation in 2D and 3D as well as for surface parameterization, and found it to provide a considerable speedup over common baseline techniques.

Skip Supplemental Material Section

Supplemental Material

a134.mp4

mp4

317 MB

References

  1. Aigerman, N., Poranne, R., and Lipman, Y. 2015. Seamless surface mappings. ACM Transactions on Graphics (TOG) 34, 4, 72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Baraff, D., and Witkin, A. 1998. Large steps in cloth simulation. In Proceedings of the 25th annual conference on Computer graphics and interactive techniques, ACM, 43--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Beck, A., and Teboulle, M. 2009. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM journal on imaging sciences 2, 1, 183--202. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Ben-Chen, M., Weber, O., and Gotsman, C. 2009. Variational harmonic maps for space deformation. In ACM Transactions on Graphics (TOG), vol. 28, ACM, 34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Botsch, M., and Sorkine, O. 2008. On linear variational surface deformation methods. Visualization and Computer Graphics, IEEE Transactions on 14, 1, 213--230. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Botsch, M., Pauly, M., Gross, M. H., and Kobbelt, L. 2006. Primo: coupled prisms for intuitive surface modeling. In Symposium on Geometry Processing, no. EPFL-CONF-149310, 11--20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Chao, I., Pinkall, U., Sanan, P., and Schröder, P. 2010. A simple geometric model for elastic deformations. In ACM Transactions on Graphics (TOG), vol. 29, ACM, 38. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Combettes, P. L., and Pesquet, J.-C. 2011. Proximal splitting methods in signal processing. In Fixed-point algorithms for inverse problems in science and engineering. Springer, 185--212.Google ScholarGoogle Scholar
  9. Degener, P., Meseth, J., and Klein, R. 2003. An adaptable surface parameterization method. IMR 3, 201--213.Google ScholarGoogle Scholar
  10. Desbrun, M., Meyer, M., and Alliez, P. 2002. Intrinsic parameterizations of surface meshes. In Computer Graphics Forum, vol. 21, Wiley Online Library, 209--218.Google ScholarGoogle Scholar
  11. Farago, I., and Karatson, J. 2008. Sobolev gradient type preconditioning for the saint-venant model of elasto-plastic torsion. Int. J. Numer. Anal. Model 5, 2, 206--221.Google ScholarGoogle Scholar
  12. Floater, M. S., and Hormann, K. 2005. Surface parameterization: a tutorial and survey. Advances in multiresolution for geometric modelling 1, 1.Google ScholarGoogle Scholar
  13. Fu, X.-M., Liu, Y., and Guo, B. 2015. Computing locally injective mappings by advanced mips. ACM Transactions on Graphics (TOG) 34, 4, 71. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Grinspun, E., Hirani, A., Desbrun, M., and Schröder, P. 2003. Discrete Shells. In ACM SIGGRAPH / Eurographics Symposium on Computer Animation, 62--67. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Hildebrandt, K., Schulz, C., Tycowicz, C. V., and Polthier, K. 2011. Interactive surface modeling using modal analysis. ACM Transactions on Graphics (TOG) 30, 5, 119. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Hormann, K., and Greiner, G. 2000. Mips: An efficient global parametrization method. Tech. rep., DTIC Document.Google ScholarGoogle Scholar
  17. Huang, J., Shi, X., Liu, X., Zhou, K., Wei, L.-Y., Teng, S.-H., Bao, H., Guo, B., and Shum, H.-Y. 2006. Subspace gradient domain mesh deformation. ACM Transactions on Graphics (TOG) 25, 3, 1126--1134. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Huang, Q.-X., Wicke, M., Adams, B., and Guibas, L. 2009. Shape decomposition using modal analysis. In Computer Graphics Forum, vol. 28, Wiley Online Library, 407--416.Google ScholarGoogle Scholar
  19. Iserles, A. 2009. A first course in the numerical analysis of differential equations. No. 44. Cambridge University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Ju, T., Schaefer, S., and Warren, J. 2005. Mean value coordinates for closed triangular meshes. In ACM Transactions on Graphics (TOG), vol. 24, ACM, 561--566. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Kovalsky, S. Z., Aigerman, N., Basri, R., and Lipman, Y. 2014. Controlling singular values with semidefinite programming. ACM Transactions on Graphics 33, 4, 68. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Kovalsky, S. Z., Aigerman, N., Basri, R., and Lipman, Y. 2015. Large-scale bounded distortion mappings. ACM Transactions on Graphics (TOG) 34, 6, 191. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Lee, J., Sun, Y., and Saunders, M. 2012. Proximal newton-type methods for convex optimization. In Advances in Neural Information Processing Systems, 836--844.Google ScholarGoogle Scholar
  24. Levy, B., Petitjean, S., Ray, N., and Maillot, J. 2002. Least squares conformal maps for automatic texture atlas generation. ACM Transactions on Graphics (TOG) 21, 3, 362--371. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Li, H., and Lin, Z. 2015. Accelerated proximal gradient methods for nonconvex programming. In Advances in Neural Information Processing Systems, 379--387. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Liu, L., Zhang, L., Xu, Y., Gotsman, C., and Gortler, S. J. 2008. A local/global approach to mesh parameterization. In Computer Graphics Forum, vol. 27, Wiley Online Library, 1495--1504. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Liu, T., Bargteil, A. W., O'Brien, J. F., and Kavan, L. 2013. Fast simulation of mass-spring systems. ACM Transactions on Graphics (TOG) 32, 6, 214. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Nesterov, Y 1983. A method of solving a convex programming problem with convergence rate o (1/k2). In Soviet Mathematics Doklady, vol. 27, 372--376.Google ScholarGoogle Scholar
  29. Nocedal, J., and Wright, S. 2006. Numerical optimization. Springer Science & Business Media.Google ScholarGoogle Scholar
  30. Ochs, P., Chen, Y., Brox, T., and Pock, T. 2014. ipiano: Inertial proximal algorithm for nonconvex optimization. SIAM Journal on Imaging Sciences 7, 2, 1388--1419.Google ScholarGoogle ScholarCross RefCross Ref
  31. Papadopoulo, T., and Lourakis, M. I. 2000. Estimating the jacobian of the singular value decomposition: Theory and applications. In Computer Vision-ECCV 2000. Springer, 554--570. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Parikh, N., and Boyd, S. P. 2014. Proximal algorithms. Foundations and Trends in optimization 1,3, 127--239. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Petersen, K. B., Pedersen, M. S., et al. 2008. The matrix cookbook. Technical University of Denmark 7, 15.Google ScholarGoogle Scholar
  34. Polyak, B. T. 1964. Some methods of speeding up the convergence of iteration methods. USSR Computational Mathematics and Mathematical Physics 4, 5, 1--17.Google ScholarGoogle ScholarCross RefCross Ref
  35. Saad, Y., and Van Der Vorst, H. A. 2000. Iterative solution of linear systems in the 20th century. Journal of Computational and Applied Mathematics 123, 1, 1--33. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Sacht, L., Vouga, E., and Jacobson, A. 2015. Nested cages. ACM Transactions on Graphics (TOG) 34, 6, 170. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Schuller, C., Kavan, L., Panozzo, D., and Sorkine-Hornung, O. 2013. Locally injective mappings. Computer Graphics Forum (proceedings of Symposium on Geometry Processing) 32, 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Sheffer, A., Praun, E., and Rose, K. 2006. Mesh parameterization methods and their applications. Foundations and Trends(R) in Computer Graphics and Vision 2, 2, 105--171. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Si, H. 2015. Tetgen, a delaunay-based quality tetrahedral mesh generator. ACM Transactions on Mathematical Software (TOMS) 41, 2, 11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Smith, J., and Schaefer, S. 2015. Bijective parameterization with free boundaries. ACM Trans. Graph. 34, 4 (July), 70:1--70:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Sorkine, O., and Alexa, M. 2007. As-rigid-as-possible surface modeling. In Symposium on Geometry processing, vol. 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Terzopoulos, D., and Fleischer, K. 1988. Modeling inelastic deformation: viscolelasticity, plasticity, fracture. In ACM Siggraph Computer Graphics, vol. 22, ACM, 269--278. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Tuckerman, L. S. 2015. Laplacian preconditioning for the inverse arnoldi method. Communications in Computational Physics 18, 05, 1336--1351.Google ScholarGoogle ScholarCross RefCross Ref
  44. Tutte, W. T. 1963. How to draw a graph. Proc. London Math. Soc 13, 3, 743--768.Google ScholarGoogle ScholarCross RefCross Ref
  45. Wang, Y., Jacobson, A., Barbic, J., and Kavan, L. 2015. Linear subspace design for real-time shape deformation. ACM Trans. Graph. 34, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Wardetzky, M., Bergou, M., Harmon, D., Zorin, D., and Grinspun, E. 2007. Discrete quadratic curvature energies. Computer Aided Geometric Design 24, 8, 499--518. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Accelerated quadratic proxy for geometric optimization

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 35, Issue 4
        July 2016
        1396 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2897824
        Issue’s Table of Contents

        Copyright © 2016 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 11 July 2016
        Published in tog Volume 35, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader