skip to main content
research-article

AutoHair: fully automatic hair modeling from a single image

Published: 11 July 2016 Publication History

Abstract

We introduce AutoHair, the first fully automatic method for 3D hair modeling from a single portrait image, with no user interaction or parameter tuning. Our method efficiently generates complete and high-quality hair geometries, which are comparable to those generated by the state-of-the-art methods, where user interaction is required. The core components of our method are: a novel hierarchical deep neural network for automatic hair segmentation and hair growth direction estimation, trained over an annotated hair image database; and an efficient and automatic data-driven hair matching and modeling algorithm, based on a large set of 3D hair exemplars. We demonstrate the efficacy and robustness of our method on Internet photos, resulting in a database of around 50K 3D hair models and a corresponding hairstyle space that covers a wide variety of real-world hairstyles. We also show novel applications enabled by our method, including 3D hairstyle space navigation and hair-aware image retrieval.

Supplementary Material

ZIP File (a116-chai-supp.zip)
Supplemental files.
MP4 File (a116.mp4)

References

[1]
Balan, A. O., Sigal, L., Black, M. J., Davis, J. E., and Haussecker, H. W. 2007. Detailed human shape and pose from images. In CVPR, 1--8.
[2]
Blanz, V., and Vetter, T. 1999. A morphable model for the synthesis of 3D faces. In Proc. SIGGRAPH '99, 187--194.
[3]
Bookstein, F. L. 1989. Principal warps: thin-plate splines and the decomposition of deformations. Trans. PAMI 11, 6, 567--585.
[4]
Cao, X., Wei, Y., Wen, F., and Sun, J. 2012. Face alignment by explicit shape regression. In CVPR, 2887--2894.
[5]
Chai, M., Wang, L., Weng, Y., Yu, Y., Guo, B., and Zhou, K. 2012. Single-view hair modeling for portrait manipulation. ACM Trans. Graph. 31, 4, 116:1--116:8.
[6]
Chai, M., Wang, L., Weng, Y., Jin, X., and Zhou, K. 2013. Dynamic hair manipulation in images and videos. ACM Trans. Graph. 32, 4, 75:1--75:8.
[7]
Chai, M., Luo, L., Sunkavalli, K., Carr, N., Hadap, S., and Zhou, K. 2015. High-quality hair modeling from a single portrait photo. ACM Trans. Graph. 34, 6, 204:1--204:10.
[8]
Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., and Yuille, A. L. 2015. Semantic image segmentation with deep convolutional nets and fully connected CRFs. In ICLR.
[9]
Cheng, M.-M., Zheng, S., Lin, W.-Y., Vineet, V., Sturgess, P., Crook, N., Mitra, N. J., and Torr, P. 2014. Imagespirit: Verbal guided image parsing. ACM Trans. Graph. 34, 1, 3:1--3:11.
[10]
Dai, J., He, K., and Sun, J. 2015. BoxSup: Exploiting bounding boxes to supervise convolutional networks for semantic segmentation. In ICCV, 1635--1643.
[11]
Desbrun, M., Meyer, M., Schröder, P., and Barr, A. H. 1999. Implicit fairing of irregular meshes using diffusion and curvature flow. In Proc. SIGGRAPH '99, 317--324.
[12]
Echevarria, J. I., Bradley, D., Gutierrez, D., and Beeler, T. 2014. Capturing and stylizing hair for 3D fabrication. ACM Trans. Graph. 33, 4, 125:1--125:11.
[13]
Electronic Arts, 2014. The Sims Resource. http://www.thesimsresource.com/.
[14]
Forney Jr, G. D. 1973. The Viterbi algorithm. Proceedings of the IEEE 61, 3, 268--278.
[15]
Gephi, 2016. The Open Graph Viz Platform. https://gephi.org.
[16]
Girshick, R., Donahue, J., Darrell, T., and Malik, J. 2014. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 580--587.
[17]
Herrera, T. L., Zinke, A., and Weber, A. 2012. Lighting hair from the inside: A thermal approach to hair reconstruction. ACM Trans. Graph. 31, 6, 146:1--146:9.
[18]
Hu, L., Ma, C., Luo, L., and Li, H. 2014. Robust hair capture using simulated examples. ACM Trans. Graph. 33, 4, 126:1--126:10.
[19]
Hu, L., Ma, C., Luo, L., Wei, L.-Y., and Li, H. 2014. Capturing braided hairstyles. ACM Trans. Graph. 33, 6, 225:1--225:9.
[20]
Hu, L., Ma, C., Luo, L., and Li, H. 2015. Single-view hair modeling using a hairstyle database. ACM Trans. Graph. 34, 4, 125:1--125:9.
[21]
Huang, J., Shi, X., Liu, X., Zhou, K., Wei, L.-Y., Teng, S.-H., Bao, H., Guo, B., and Shum, H.-Y. 2006. Subspace gradient domain mesh deformation. ACM Trans. Graph. 25, 3, 1126--1134.
[22]
Huang, S.-S., Shamir, A., Shen, C.-H., Zhang, H., Sheffer, A., Hu, S.-M., and Cohen-Or, D. 2013. Qualitative organization of collections of shapes via quartet analysis. ACM Trans. Graph. 32, 4, 71:1--71:10.
[23]
Hueting, M., Ovsjanikov, M., and Mitra, N. J. 2015. CrossLink: Joint understanding of image and 3D model collections through shape and camera pose variations. ACM Trans. Graph. 34, 6, 233:1--233:13.
[24]
Jakob, W., Moon, J. T., and Marschner, S. 2009. Capturing hair assemblies fiber by fiber. ACM Trans. Graph. 28, 5, 164:1--164:9.
[25]
Jia, Y., 2013. Caffe: An open source convolutional architecture for fast feature embedding.
[26]
Karypis, G., and Kumar, V. 1998. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM Journal on scientific Computing 20, 1, 359--392.
[27]
Kim, V. G., Li, W., Mitra, N. J., DiVerdi, S., and Funkhouser, T. 2012. Exploring collections of 3D models using fuzzy correspondences. ACM Trans. Graph. 31, 4, 54:1--54:11.
[28]
Krähenbühl, P., and Koltun, V. 2011. Efficient inference in fully connected CRFs with Gaussian edge potentials. In NIPS, 109--117.
[29]
Li, Y., Su, H., Qi, C. R., Fish, N., Cohen-Or, D., and Guibas, L. J. 2015. Joint embeddings of shapes and images via CNN image purification. ACM Trans. Graph. 34, 6, 234:1--234:12.
[30]
Ling, H., and Okada, K. 2007. An efficient earth mover's distance algorithm for robust histogram comparison. Trans. PAMI 29, 5, 840--853.
[31]
Liu, J., Sun, J., and Shum, H.-Y. 2009. Paint selection. ACM Trans. Graph. 28, 3, 69:1--69:7.
[32]
Liu, Z., Li, X., Luo, P., Loy, C. C., and Tang, X. 2015. Semantic image segmentation via deep parsing network. In ICCV, 1377--1385.
[33]
Lloyd, S. P. 1982. Least squares quantization in PCM. IEEE Transactions on Information Theory 28, 2, 129--137.
[34]
Long, J., Shelhamer, E., and Darrell, T. 2015. Fully convolutional networks for semantic segmentation. In CVPR, 3431--3440.
[35]
Luo, P., Wang, X., and Tang, X. 2012. Hierarchical face parsing via deep learning. In CVPR, 2480--2487.
[36]
Luo, L., Li, H., and Rusinkiewicz, S. 2013. Structure-aware hair capture. ACM Trans. Graph. 32, 4, 76:1--76:12.
[37]
O'Donovan, P., Lībeks, J., Agarwala, A., and Hertzmann, A. 2014. Exploratory font selection using crowdsourced attributes. ACM Trans. Graph. 33, 4, 92:1--92:9.
[38]
Ovsjanikov, M., Li, W., Guibas, L., and Mitra, N. J. 2011. Exploration of continuous variability in collections of 3D shapes. ACM Trans. Graph. 30, 4, 33:1--33:10.
[39]
Paris, S., Chang, W., Kozhushnyan, O. I., Jarosz, W., Matusik, W., Zwicker, M., and Durand, F. 2008. Hair photobooth: Geometric and photometric acquisition of real hairstyles. ACM Trans. Graph. 27, 3, 30:1--30:9.
[40]
Rabinovich, A., Vedaldi, A., Galleguillos, C., Wiewiora, E., and Belongie, S. 2007. Objects in context. In ICCV, 1--8.
[41]
Ren, S., He, K., Girshick, R., and Sun, J. 2015. Faster R-CNN: Towards real-time object detection with region proposal networks. In NIPS, 91--99.
[42]
Selle, A., Lentine, M., and Fedkiw, R. 2008. A mass spring model for hair simulation. ACM Trans. Graph. 27, 3, 64:1--64:11.
[43]
Shotton, J., Winn, J., Rother, C., and Criminisi, A. 2006. Textonboost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation. In ECCV, 1--15.
[44]
Simonyan, K., and Zisserman, A. 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
[45]
Smith, B. M., Zhang, L., Brandt, J., Lin, Z., and Yang, J. 2013. Exemplar-based face parsing. In CVPR, 3484--3491.
[46]
Uijlings, J. R., van de Sande, K. E., Gevers, T., and Smeulders, A. W. 2013. Selective search for object recognition. IJCV 104, 2, 154--171.
[47]
Wang, D., Chai, X., Zhang, H., Chang, H., Zeng, W., and Shan, S. 2011. A novel coarse-to-fine hair segmentation method. In IEEE Automatic Face Gesture Recognition and Workshops, 233--238.
[48]
Ward, K., Bertails, F., Kim, T.-Y., Marschner, S. R., Cani, M.-P., and Lin, M. C. 2007. A survey on hair modeling: Styling, simulation, and rendering. TVCG 13, 2, 213--234.
[49]
Warrell, J., and Prince, S. J. D. 2009. Labelfaces: Parsing facial features by multiclass labeling with an epitome prior. In ICIP, 2481--2484.
[50]
Weng, Y., Wang, L., Li, X., Chai, M., and Zhou, K. 2013. Hair interpolation for portrait morphing. In Computer Graphics Forum, vol. 32, 79--84.
[51]
Yuksel, C., Schaefer, S., and Keyser, J. 2009. Hair meshes. ACM Trans. Graph. 28, 5, 166:1--166:7.
[52]
Zheng, S., Jayasumana, S., Romera-Paredes, B., Vineet, V., Su, Z., Du, D., Huang, C., and Torr, P. H. S. 2015. Conditional random fields as recurrent neural networks. In ICCV, 1529--1537.

Cited By

View all
  • (2024)GroomCap: High-Fidelity Prior-Free Hair CaptureACM Transactions on Graphics10.1145/368776843:6(1-15)Online publication date: 19-Dec-2024
  • (2024)Real-Time Hair Rendering with Hair MeshesACM SIGGRAPH 2024 Conference Papers10.1145/3641519.3657521(1-10)Online publication date: 13-Jul-2024
  • (2024)3D Reconstruction and Semantic Modeling of EyelashesComputer Graphics Forum10.1111/cgf.1504043:2Online publication date: 24-Apr-2024
  • Show More Cited By

Index Terms

  1. AutoHair: fully automatic hair modeling from a single image

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 35, Issue 4
    July 2016
    1396 pages
    ISSN:0730-0301
    EISSN:1557-7368
    DOI:10.1145/2897824
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 11 July 2016
    Published in TOG Volume 35, Issue 4

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. data-driven modeling
    2. deep neural network
    3. hair modeling
    4. image segmentation

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)84
    • Downloads (Last 6 weeks)5
    Reflects downloads up to 28 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)GroomCap: High-Fidelity Prior-Free Hair CaptureACM Transactions on Graphics10.1145/368776843:6(1-15)Online publication date: 19-Dec-2024
    • (2024)Real-Time Hair Rendering with Hair MeshesACM SIGGRAPH 2024 Conference Papers10.1145/3641519.3657521(1-10)Online publication date: 13-Jul-2024
    • (2024)3D Reconstruction and Semantic Modeling of EyelashesComputer Graphics Forum10.1111/cgf.1504043:2Online publication date: 24-Apr-2024
    • (2024)MonoHair: High-Fidelity Hair Modeling from a Monocular Video2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)10.1109/CVPR52733.2024.02281(24164-24173)Online publication date: 16-Jun-2024
    • (2024)Dr.Hair: Reconstructing Scalp-Connected Hair Strands without Pre-Training via Differentiable Rendering of Line Segments2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)10.1109/CVPR52733.2024.01947(20601-20611)Online publication date: 16-Jun-2024
    • (2024)Fine-Grained Human Hair Segmentation Using a Text-to-Image Diffusion ModelIEEE Access10.1109/ACCESS.2024.335554212(13912-13922)Online publication date: 2024
    • (2024)A Local Appearance Model for Volumetric Capture of Diverse Hairstyles2024 International Conference on 3D Vision (3DV)10.1109/3DV62453.2024.00013(190-200)Online publication date: 18-Mar-2024
    • (2024)Artificial intelligence powered Metaverse: analysis, challenges and future perspectivesArtificial Intelligence Review10.1007/s10462-023-10641-x57:2Online publication date: 5-Feb-2024
    • (2024)Human Hair Reconstruction with Strand-Aligned 3D GaussiansComputer Vision – ECCV 202410.1007/978-3-031-72640-8_23(409-425)Online publication date: 29-Oct-2024
    • (2023)Anime-like Character Face Generation: A SurveyHighlights in Science, Engineering and Technology10.54097/hset.v68i.1206968(223-232)Online publication date: 9-Oct-2023
    • Show More Cited By

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media