skip to main content
research-article

Let there be color!: joint end-to-end learning of global and local image priors for automatic image colorization with simultaneous classification

Published:11 July 2016Publication History
Skip Abstract Section

Abstract

We present a novel technique to automatically colorize grayscale images that combines both global priors and local image features. Based on Convolutional Neural Networks, our deep network features a fusion layer that allows us to elegantly merge local information dependent on small image patches with global priors computed using the entire image. The entire framework, including the global and local priors as well as the colorization model, is trained in an end-to-end fashion. Furthermore, our architecture can process images of any resolution, unlike most existing approaches based on CNN. We leverage an existing large-scale scene classification database to train our model, exploiting the class labels of the dataset to more efficiently and discriminatively learn the global priors. We validate our approach with a user study and compare against the state of the art, where we show significant improvements. Furthermore, we demonstrate our method extensively on many different types of images, including black-and-white photography from over a hundred years ago, and show realistic colorizations.

Skip Supplemental Material Section

Supplemental Material

a110.mp4

mp4

312.8 MB

References

  1. An, X., and Pellacini, F. 2008. AppProp: All-pairs appearance-space edit propagation. ACM Trans. Graph. 27, 3 (Aug.), 40:1--40:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bell, S., and Bala, K. 2015. Learning visual similarity for product design with convolutional neural networks. ACM Trans. on Graphics (SIGGRAPH) 34, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bromley, J., Guyon, I., Lecun, Y., Säckinger, E., and Shah, R. 1994. Signature verification using a "siamese" time delay neural network. In NIPS.Google ScholarGoogle Scholar
  4. Charpiat, G., Hofmann, M., and Schölkopf, B. 2008. Automatic image colorization via multimodal predictions. In ECCV. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Chen, X., Zou, D., Zhao, Q., and Tan, P. 2012. Manifold preserving edit propagation. ACM Trans. Graph. 31, 6 (Nov.), 132:1--132:7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Cheng, Z., Yang, Q., and Sheng, B. 2015. Deep colorization. In Proceedings of ICCV 2015, 29--43. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Chia, A. Y.-S., Zhuo, S., Gupta, R. K., Tai, Y.-W., Cho, S.-Y., Tan, P., and Lin, S. 2011. Semantic colorization with internet images. ACM Trans. Graph. 30, 6, 156:1--156:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Dong, C., Loy, C. C., He, K., and Tang, X. 2016. Image super-resolution using deep convolutional networks. PAMI 38, 2, 295--307. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Eigen, D., and Fergus, R. 2015. Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In ICCV. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Fischer, P., Dosovitskiy, A., Ilg, E., Häusser, P., Hazirbas, C., Golkov, V., van der Smagt, P., Cremers, D., and Brox, T. 2015. Flownet: Learning optical flow with convolutional networks.Google ScholarGoogle Scholar
  11. Fukushima, K. 1988. Neocognitron: A hierarchical neural network capable of visual pattern recognition. Neural networks 1, 2, 119--130.Google ScholarGoogle Scholar
  12. Gupta, R. K., Chia, A. Y.-S., Rajan, D., Ng, E. S., and Zhiyong, H. 2012. Image colorization using similar images. In ACM International Conference on Multimedia, 369--378. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Huang, Y.-C., Tung, Y.-S., Chen, J.-C., Wang, S.-W., and Wu, J.-L. 2005. An adaptive edge detection based colorization algorithm and its applications. In ACM International Conference on Multimedia, 351--354. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Ioffe, S., and Szegedy, C. 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In ICML.Google ScholarGoogle Scholar
  15. Irony, R., Cohen-Or, D., and Lischinski, D. 2005. Colorization by example. In Eurographics Conference on Rendering Techniques, 201--210. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Krizhevsky, A., Sutskever, I., and Hinton, G. E. 2012. Imagenet classification with deep convolutional neural networks. In NIPS.Google ScholarGoogle Scholar
  17. LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. 1998. Gradient-based learning applied to document recognition. Proceedings of the IEEE 86, 11, 2278--2324.Google ScholarGoogle ScholarCross RefCross Ref
  18. Levin, A., Lischinski, D., and Weiss, Y. 2004. Colorization using optimization. ACM Transactions on Graphics 23, 689--694. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Li, Y., Ju, T., and Hu, S.-M. 2010. Instant propagation of sparse edits on images and videos. Computer Graphics Forum 29, 7, 2049--2054.Google ScholarGoogle ScholarCross RefCross Ref
  20. Liu, X., Wan, L., Qu, Y., Wong, T.-T., Lin, S., Leung, C.-S., and Heng, P.-A. 2008. Intrinsic colorization. ACM Transactions on Graphics (SIGGRAPH Asia 2008 issue) 27, 5 (December), 152:1--152:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Long, J., Shelhamer, E., and Darrell, T. 2015. Fully convolutional networks for semantic segmentation. In CVPR.Google ScholarGoogle Scholar
  22. Luan, Q., Wen, F., Cohen-Or, D., Liang, L., Xu, Y.-Q., and Shum, H.-Y. 2007. Natural image colorization. In Eurographics Conference on Rendering Techniques, 309--320. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Pitié, F., Kokaram, A. C., and Dahyot, R. 2007. Automated colour grading using colour distribution transfer. Comput. Vis. Image Underst. 107, 1--2 (July), 123--137. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Qu, Y., Wong, T.-T., and Heng, P.-A. 2006. Manga colorization. ACM Trans. Graph. 25, 3 (July), 1214--1220. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Reinhard, E., Ashikhmin, M., Gooch, B., and Shirley, P. 2001. Color transfer between images. IEEE Computer Graphics and Applications 21, 5 (sep), 34--41. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Rumelhart, D., Hinton, G., and Williams, R. 1986. Learning representations by back-propagating errors. In Nature.Google ScholarGoogle Scholar
  27. Shen, W., Wang, X., Wang, Y., Bai, X., and Zhang, Z. 2015. Deepcontour: A deep convolutional feature learned by positive-sharing loss for contour detection. In CVPR.Google ScholarGoogle Scholar
  28. Simonyan, K., and Zisserman, A. 2015. Very deep convolutional networks for large-scale image recognition. In ICLR.Google ScholarGoogle Scholar
  29. Springenberg, J. T., Dosovitskiy, A., Brox, T., and Riedmiller, M. A. 2015. Striving for simplicity: The all convolutional net. In ICLR Workshop Track.Google ScholarGoogle Scholar
  30. Sýkora, D., Dingliana, J., and Collins, S. 2009. Lazy-Brush: Flexible painting tool for hand-drawn cartoons. Computer Graphics Forum 28, 2, 599--608.Google ScholarGoogle ScholarCross RefCross Ref
  31. Tai, Y., Jia, J., and Tang, C. 2005. Local color transfer via probabilistic segmentation by expectation-maximization. In CVPR, 747--754. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Wang, L., Guo, S., Huang, W., and Qiao, Y. 2015. Places205-vggnet models for scene recognition. CoRR abs/1508.01667.Google ScholarGoogle Scholar
  33. Wang, L., Lee, C., Tu, Z., and Lazebnik, S. 2015. Training deeper convolutional networks with deep supervision. CoRR abs/1505.02496.Google ScholarGoogle Scholar
  34. Wang, X., Fouhey, D. F., and Gupta, A. 2015. Designing deep networks for surface normal estimation. In CVPR.Google ScholarGoogle Scholar
  35. Welsh, T., Ashikhmin, M., and Mueller, K. 2002. Transferring color to greyscale images. ACM Trans. Graph. 21, 3 (July), 277--280. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Wu, F., Dong, W., Kong, Y., Mei, X., Paul, J.-C., and Zhang, X. 2013. Content-based colour transfer. Computer Graphics Forum 32, 1, 190--203.Google ScholarGoogle ScholarCross RefCross Ref
  37. Xu, K., Li, Y., Ju, T., Hu, S.-M., and Liu, T.-Q. 2009. Efficient affinity-based edit propagation using k-d tree. ACM Trans. Graph. 28, 5 (Dec.), 118:1--118:6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Xu, L., Yan, Q., and Jia, J. 2013. A sparse control model for image and video editing. ACM Trans. Graph. 32, 6 (Nov.), 197:1--197:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Yatziv, L., Yatziv, L., Sapiro, G., and Sapiro, G. 2004. Fast image and video colorization using chrominance blending. IEEE Transaction on Image Processing 15, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Zeiler, M. D. 2012. ADADELTA: an adaptive learning rate method. CoRR abs/1212.5701.Google ScholarGoogle Scholar
  41. Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., and Oliva, A. 2014. Learning deep features for scene recognition using places database. In NIPS. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Let there be color!: joint end-to-end learning of global and local image priors for automatic image colorization with simultaneous classification

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 35, Issue 4
        July 2016
        1396 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2897824
        Issue’s Table of Contents

        Copyright © 2016 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 11 July 2016
        Published in tog Volume 35, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader