skip to main content
10.1145/2897845.2897856acmconferencesArticle/Chapter ViewAbstractPublication Pagesasia-ccsConference Proceedingsconference-collections
research-article

Mystique: Evolving Android Malware for Auditing Anti-Malware Tools

Published: 30 May 2016 Publication History

Abstract

In the arms race of attackers and defenders, the defense is usually more challenging than the attack due to the unpredicted vulnerabilities and newly emerging attacks every day. Currently, most of existing malware detection solutions are individually proposed to address certain types of attacks or certain evasion techniques. Thus, it is desired to conduct a systematic investigation and evaluation of anti-malware solutions and tools based on different attacks and evasion techniques. In this paper, we first propose a meta model for Android malware to capture the common attack features and evasion features in the malware. Based on this model, we develop a framework, MYSTIQUE, to automatically generate malware covering four attack features and two evasion features, by adopting the software product line engineering approach. With the help of MYSTIQUE, we conduct experiments to 1) understand Android malware and the associated attack features as well as evasion techniques; 2) evaluate and compare the 57 off-the-shelf anti-malware tools, 9 academic solutions and 4 App market vetting processes in terms of accuracy in detecting attack features and capability in addressing evasion. Last but not least, we provide a benchmark of Android malware with proper labeling of contained attack and evasion features.

References

[1]
Activity | Android Developer. http://developer.android.com/reference/android/app/Activity.html#ActivityLifecycle.
[2]
GetJar Developer Zone: Publishing. http://developer.getjar.mobi/.
[3]
Mystique | Evolving Android Malware for Auditing Anti-Malware Tools. https://sites.google.com/site/malwareevolution/.
[4]
SlideME | Android Apps Market: Download Free & Paid Android Applications. http://slideme.org/.
[5]
TorrApk - Alternative Android App Store for Free Applications. https://www.torrapk.com/en.
[6]
VirusShare. http://www.virusshare.com.
[7]
10 Years of Mobile Malware Whitepaper. http://www.fortinet.com/sites/default/files/whitepapers/10-Years-of-Mobile-Malware-Whitepaper.pdf, 2014.
[8]
VirusTotal - Free Online Virus, Malware and URL Scanner. https://www.virustotal.com, 2015.
[9]
Y. Aafer, W. Du, and H. Yin. DroidAPIMiner: Mining API-Level Features for Robust Malware Detection in Android. In SecureComm, 2013.
[10]
K. Allix, T. F. Bissyandé, J. Klein, and Y. L. Traon. Machine Learning-Based Malware Detection for Android Applications: History Matters! Technical Report 978--2--87971--132--4, 2014.
[11]
M. Arapinis, L. Mancini, E. Ritter, M. Ryan, N. Golde, K. Redon, and R. Borgaonkar. New Privacy Issues in Mobile Telephony: Fix and Verification. In CCS, pages 205--216, 2012.
[12]
D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, and K. Rieck. Drebin: Effective and Explainable Detection of Android Malware in Your Pocket. In NDSS, 2014.
[13]
S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon, D. Octeau, and P. McDaniel. FlowDroid: Precise Context, Flow, Field, Object-sensitive and Lifecycle-aware Taint Analysis for Android Apps. In PLDI, pages 259--269, 2014.
[14]
V. Avdiienko, K. Kuznetsov, A. Gorla, and A. Zeller. Mining Apps for Abnormal Usage of Sensitive Data. In ICSE, 2015.
[15]
E. Aydogan and S. Sen. Automatic Generation of Mobile Malwares Using Genetic Programming. In Applications of Evolutionary Computation, volume 9028, 2015.
[16]
E. Barkan, E. Biham, and N. Keller. Instant Ciphertext-Only Cryptanalysis of GSM Encrypted Communication. CRYPTO, 21(3):392--429, Mar. 2003.
[17]
I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani. Crowdroid: Behavior-based Malware Detection System for Android. In SPSM, pages 15--26, 2011.
[18]
A. Cani, M. Gaudesi, E. Sanchez, G. Squillero, and A. Tonda. Towards Automated Malware Creation: Code Generation and Code Integration. In SAC, pages 157--160, 2014.
[19]
K. Chen, P. Liu, and Y. Zhang. Achieving Accuracy and Scalability Simultaneously in Detecting Application Clones on Android Markets. In ICSE, pages 175--186, 2014.
[20]
K. Z. Chen, N. M. Johnson, V. D'Silva, S. Dai, K. MacNamara, T. R. Magrino, E. X. Wu, M. Rinard, and D. X. Song. Contextual Policy Enforcement in Android Applications with Permission Event Graphs. In NDSS, 2013.
[21]
Q. A. Chen, Z. Qian, and Z. M. Mao. Peeking into Your App without Actually Seeing It: UI State Inference and Novel Android Attacks. In USENIX Security, pages 1037--1052, 2014.
[22]
Y. Choi, T. Kim, S. Choi, and C. Lee. Automatic Detection for JavaScript Obfuscation Attacks in Web Pages through String Pattern Analysis. In FGIT, pages 160--172, 2009.
[23]
M. Christodorescu and S. Jha. Testing Malware Detectors. In ISSTA, pages 34--44, 2004.
[24]
P. Clements and L. Northrop. Software Product Lines: Practices and Patterns. Addison-Wesley Professional, 3rd edition, Aug. 2001.
[25]
J. Crussell, C. Gibler, and H. Chen. Attack of the Clones: Detecting Cloned Applications on Android Markets. In ESORICS, volume 7459, pages 37--54. 2012.
[26]
K. Czarnecki and U. W. Eisenecker. Generative programming - methods, tools and applications. Addison-Wesley, 2000.
[27]
S. Dai, A. Tongaonkar, X. Wang, A. Nucci, and D. Song. Network Profiler: Towards Automatic Fingerprinting of Android Apps. In IEEE INFOCOM, pages 809--817, 2013.
[28]
W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N. Sheth. TaintDroid: An Information-flow Tracking System for Realtime Privacy Monitoring on Smartphones. In OSDI, pages 1--6, 2010.
[29]
W. Enck, M. Ongtang, and P. D. McDaniel. On Lightweight Mobile Phone Application Certification. In CCS, pages 235--245, 2009.
[30]
Essam Al Daoud and Iqbal H. Jebril and Belal Zaqaibeh. Computer Virus Strategies and Detection Methods. 1(2), 2008.
[31]
A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin. Permission Re-Delegation: Attacks and Defenses. In USENIX Security, 2011.
[32]
Y. Feng, S. Anand, I. Dillig, and A. Aiken. Apposcopy: Semantics-based Detection of Android Malware Through Static Analysis. In FSE, pages 576--587, 2014.
[33]
A. P. Fuchs, A. Chaudhuri, and J. S. Foster. Checking Interation-Based Declassification Policies for Android Using Symbolic Execution. Technical report, 2009.
[34]
J. Garcia, M. Hammad, B. Pedrood, A. Bagheri-Khaligh, and S. Malek. Obfuscation-Resilient, Efficient, and Accurate Detection and Family Identification of Android Malware. Technical Report GMU-CS-TR-2015--10, 2015.
[35]
H. Gascon, F. Yamaguchi, D. Arp, and K. Rieck. Structural Detection of Android Malware Using Embedded Call Graphs. In AISec, pages 45--54, 2013.
[36]
M. I. Gordon, D. Kim, J. H. Perkins, L. Gilham, N. Nguyen, and M. C. Rinard. Information Flow Analysis of Android Applications in DroidSafe. In NDSS, 2015.
[37]
H. Gunadi and A. Tiu. Efficient Runtime Monitoring with Metric Temporal Logic: A Case Study in the Android Operating System. CoRR, abs/1311.2362, 2013.
[38]
H. Huang, K. Chen, C. Ren, P. Liu, S. Zhu, and D. Wu. Towards Discovering and Understanding Unexpected Hazards in Tailoring Antivirus Software for Android. In AsiaCCS, pages 7--18, 2015.
[39]
H. Ishibuchi, N. Tsukamoto, and Y. Nojima. Evolutionary Many-Objective Optimization: A Short Review. In CEC, pages 2419--2426, 2008.
[40]
K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Feature-Oriented Domain Analysis (FODA) Feasibility Study. Technical report, Nov 1990.
[41]
E. Kim. Creating Better User Experiences on Google Play. http://android-developers.blogspot.ro/2015/03/creating-better-user-experiences-on.html, 2015.
[42]
P. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In CRYPTO, pages 388--397, Aug. 1999.
[43]
L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. L. Traon, S. Arzt, S. Rasthofer, E. Bodden, D. Octeau, and P. McDaniel. IccTA: Detecting Inter-Component Privacy Leaks in Android Apps. In ICSE, 2015.
[44]
H. Lockheimer. Android and Security - Official Google Mobile Blog. http://googlemobile.blogspot.sg/2012/02/android-and-security.html, 2012.
[45]
F. Maggi, A. Valdi, and S. Zanero. AndroTotal: A Flexible, Scalable Toolbox and Service for Testing Mobile Malware Detectors. In SPSM, pages 49--54, 2013.
[46]
D. Maier, T. Müller, and M. Protsenko. Divide-and-Conquer: Why Android Malware cannot be stopped. In ARES.
[47]
K. Micinski, J. Fetter-Degges, J. Jeon, J. S. Foster, and M. R. Clarkson. Checking Interation-Based Declassification Policies for Android Using Symbolic Execution. Technical Report arXiv:1504.03711v2, 2015.
[48]
D. A. Mundie and D. M. McIntire. An Ontology for Malware Analysis. In ARES, pages 556--558, 2013.
[49]
D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein, and Y. Le Traon. Effective Inter-Component Communication Mapping in Android with Epicc: An Essential Step Towards Holistic Security Analysis. In USENIX Security, pages 543--558, 2013.
[50]
N. Peiravian and X. Zhu. Machine Learning for Android Malware Detection Using Permission and API Calls. In ICTAI, pages 300--305, 2013.
[51]
T. Petsas, G. Voyatzis, E. Athanasopoulos, M. Polychronakis, and S. Ioannidis. Rage Against the Virtual Machine: Hindering Dynamic Analysis of Android Malware. In EuroSec, pages 5:1--5:6, 2014.
[52]
Z. Qian, Z. M. Mao, and Y. Xie. Collaborative TCP Sequence Number Inference Attack: How to Crack Sequence Number Under a Second. In CCS, pages 593--604, 2012.
[53]
S. Rasthofer, S. Arzt, and E. Bodden. A Machine-learning Approach for Classifying and Categorizing Android Sources and Sinks. In NDSS, 2014.
[54]
V. Rastogi, Y. Chen, and X. Jiang. DroidChameleon: Evaluating Android Anti-malware Against Transformation Attacks. In AsiaCCS, pages 329--334, 2013.
[55]
V. Rastogi, Y. Chen, and X. Jiang. Catch Me If You Can: Evaluating Android Anti-Malware Against Transformation Attacks. IEEE Transactions on Information Forensics and Security, 9(1):99--108, 2014.
[56]
J. Reed, A. J. Aviv, D. Wagner, A. Haeberlen, B. C. Pierce, and J. M. Smith. Differential Privacy for Collaborative Security. In EUROSEC, pages 1--7, 2010.
[57]
J. Sahs and L. Khan. A Machine Learning Approach to Android Malware Detection. In EISIC, pages 141--147, 2012.
[58]
A. S. Sayyad, T. Menzies, and H. Ammar. On the Value of User Preferences in Search-based Software Engineering: A Case Study in Software Product Lines. In ICSE, pages 492--501, 2013.
[59]
R. Schlegel, K. Zhang, X. yong Zhou, M. Intwala, A. Kapadia, and X. Wang. Soundcomber: A Stealthy and Context-Aware Sound Trojan for Smartphones. In NDSS, Feb. 2011.
[60]
R. Schlegel, K. Zhang, X. Zhou, M. Intwala, A. Kapadia, and X. Wang. Soundcomber: A Stealthy and Context-Aware Sound Trojan for Smartphones. In NDSS, 2011.
[61]
A.-D. Schmidt, R. Bye, H.-G. Schmidt, J. Clausen, O. Kiraz, K. A. Yüksel, S. A. Camtepe, and S. Albayrak. Static Analysis of Executables for Collaborative Malware Detection on Android. In ICC, pages 631--635, 2009.
[62]
S. She, R. Lotufo, T. Berger, A. Wasowski, and K. Czarnecki. Reverse engineering feature models. In ICSE, pages 461--470, 2011.
[63]
D. J. J. T. SUFATRIO, T.-W. CHUA, and V. L. L. THING. Securing Android: A Survey, Taxonomy, and Challenges, May 2015.
[64]
T. H. Tan, Y. Xue, M. Chen, J. Sun, Y. Liu, and J. S. Dong. Optimizing selection of competing features via feedback-directed evolutionary algorithms. In ISSTA, pages 246--256, 2015.
[65]
W. Yang, X. Xiao, B. Andow, S. Li, T. Xie, and W. Enck. AppContext: Differentiating Malicious and Benign Mobile App Behavior Under Contexts. In ICSE, 2014.
[66]
Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. S. Wang. AppIntent: Analyzing Sensitive Data Transmission in Android for Privacy Leakage Detection. In CCS, pages 1043--1054, 2013.
[67]
M. Zhang, Y. Duan, H. Yin, and Z. Zhao. Semantics-Aware Android Malware Classification Using Weighted Contextual API Dependency Graphs. In CCS, 2014.
[68]
M. Zheng, P. P. C. Lee, and J. C. S. Lui. ADAM: An Automatic and Extensible Platform to Stress Test Android Anti-virus Systems. In DIMVA, pages 82--101, 2013.
[69]
W. Zhou, Y. Zhou, M. Grace, X. Jiang, and S. Zou. Fast, Scalable Detection of "Piggybacked" Mobile Applications. In Proceedings of the 3rd ACM Conference on Data and Application Security and Privacy, pages 185--196, 2013.
[70]
Y. Zhou and X. Jiang. Dissecting Android Malware: Characterization and Evolution. In IEEE S&P, pages 95--109, 2012.

Cited By

View all
  • (2024)Meta-Learning for Multi-Family Android Malware ClassificationACM Transactions on Software Engineering and Methodology10.1145/366480633:7(1-27)Online publication date: 26-Aug-2024
  • (2024)Unmasking the Veiled: A Comprehensive Analysis of Android Evasive MalwareProceedings of the 19th ACM Asia Conference on Computer and Communications Security10.1145/3634737.3637658(383-398)Online publication date: 1-Jul-2024
  • (2023)DexBERT: Effective, Task-Agnostic and Fine-Grained Representation Learning of Android BytecodeIEEE Transactions on Software Engineering10.1109/TSE.2023.331087449:10(4691-4706)Online publication date: 1-Oct-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
ASIA CCS '16: Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security
May 2016
958 pages
ISBN:9781450342339
DOI:10.1145/2897845
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 30 May 2016

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. android feature model
  2. defense capability
  3. evolutionary algorithm
  4. malware generation

Qualifiers

  • Research-article

Funding Sources

Conference

ASIA CCS '16
Sponsor:

Acceptance Rates

ASIA CCS '16 Paper Acceptance Rate 73 of 350 submissions, 21%;
Overall Acceptance Rate 418 of 2,322 submissions, 18%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)52
  • Downloads (Last 6 weeks)6
Reflects downloads up to 17 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Meta-Learning for Multi-Family Android Malware ClassificationACM Transactions on Software Engineering and Methodology10.1145/366480633:7(1-27)Online publication date: 26-Aug-2024
  • (2024)Unmasking the Veiled: A Comprehensive Analysis of Android Evasive MalwareProceedings of the 19th ACM Asia Conference on Computer and Communications Security10.1145/3634737.3637658(383-398)Online publication date: 1-Jul-2024
  • (2023)DexBERT: Effective, Task-Agnostic and Fine-Grained Representation Learning of Android BytecodeIEEE Transactions on Software Engineering10.1109/TSE.2023.331087449:10(4691-4706)Online publication date: 1-Oct-2023
  • (2023)Cyber Code Intelligence for Android Malware DetectionIEEE Transactions on Cybernetics10.1109/TCYB.2022.316462553:1(617-627)Online publication date: Jan-2023
  • (2023)FMDiv: Functional Module Division on Binary Malware for Accurate Malicious Code Localization2023 26th International Conference on Computer Supported Cooperative Work in Design (CSCWD)10.1109/CSCWD57460.2023.10151998(947-952)Online publication date: 24-May-2023
  • (2023)Enhancing Malware Detection for Android Apps: Detecting Fine-Granularity Malicious Components2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE)10.1109/ASE56229.2023.00074(1212-1224)Online publication date: 11-Sep-2023
  • (2022)KUBO: a framework for automated efficacy testing of anti-virus behavioral detection with procedure-based malware emulationProceedings of the 13th International Workshop on Automating Test Case Design, Selection and Evaluation10.1145/3548659.3561307(37-44)Online publication date: 7-Nov-2022
  • (2022)Adapting novelty towards generating antigens for antivirus systemsProceedings of the Genetic and Evolutionary Computation Conference10.1145/3512290.3528693(1254-1262)Online publication date: 8-Jul-2022
  • (2022)On Impact of Adversarial Evasion Attacks on ML-based Android Malware Classifier Trained on Hybrid Features2022 14th International Conference on Software, Knowledge, Information Management and Applications (SKIMA)10.1109/SKIMA57145.2022.10029504(216-221)Online publication date: 2-Dec-2022
  • (2022)An Investigation on Fragility of Machine Learning Classifiers in Android Malware DetectionIEEE INFOCOM 2022 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)10.1109/INFOCOMWKSHPS54753.2022.9798161(1-6)Online publication date: 2-May-2022
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media