skip to main content
10.1145/2908812.2908852acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
research-article

Experimental Investigation of Recombination Operators for Differential Evolution

Authors Info & Claims
Published:20 July 2016Publication History

ABSTRACT

This paper presents a systematic investigation of the effects of sixteen recombination operators for real-coded spaces on the performance of Differential Evolution. A unified description of the operators in terms of mathematical operations of vectors is presented, and a standardized implementation is provided in the form of an R package. The objectives are to simplify the examination of similarities and differences between operators as well as the understanding of their effects on the population, and to provide a platform in which future operators can be incorporated and evaluated. An experimental comparison of the recombination operators is conducted using twenty-eight test problems, and the results are used to discuss possibly promising directions in the development of improved operators for differential evolution.

References

  1. Y. Benjamini and D. Yekutieli. The control of the false discovery rate in multiple testing under dependency. Annals of Statistics, 29:1165--1188, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  2. M. Birattari. Tuning Metaheuristics: A Machine Learning Perspective. Springer, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer. Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems. IEEE Transactions on Evolutionary Computation, 10(6):646--657, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. F. Campelo and M. Botelho. ExpDE: Modular Differential Evolution for Experimenting with Operators, 2016. R package v. 0.1.2; http://cran.r-project.org/web/packages/ExpDE.Google ScholarGoogle Scholar
  5. W. Conover. Practical Nonparametric Statistics. Wiley, 3rd ed. edition, 1999.Google ScholarGoogle Scholar
  6. K. Deb and R. B. Agrawal. Simulated binary crossover for continuous search space. Complex Systems, 9(3):1--15, 1994.Google ScholarGoogle Scholar
  7. B. Efron and R. Tibshirani. An Introduction to the Bootstrap. Chapman & Hall/CRC, 1993.Google ScholarGoogle ScholarCross RefCross Ref
  8. L. J. Eshelman, R. A. Caruana, and J. D. Schaffer. Biases in the crossover landscape. In Proceedings of the Third International Conference on Genetic Algorithms, pages 10--19, San Francisco, CA, USA, 1989. Morgan Kaufmann Publishers Inc. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. L. J. Eshelman and J. D. Schaffer. Real-Coded Genetic Algorithms and Interval-Schemata. In Foundations of Genetic Algorithms, pages 187--202, 1992.Google ScholarGoogle Scholar
  10. F. Goulart, F. Campelo, and J. Ramírez. Estudo dos mecanismos de funcionamento do algoritmo de evoluçao diferencial. In Anais do X Congresso Brasileiro de Inteligência Computacional, 2011. CD-ROM, paper ST26:2. In Portuguese.Google ScholarGoogle Scholar
  11. S.-M. Guo and C.-C. Yang. Enhancing differential evolution utilizing eigenvector-based crossover operator. IEEE Transactions on Evolutionary Computation, 19(1):31--49, 2015.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. T. D. Gwiazda. Crossover for single-objective numerical optimization problems, volume 1. Tomasz Gwiazda (ed.), 2006.Google ScholarGoogle Scholar
  13. F. Herrera, M. Lozano, and A. Sánchez. A taxonomy for the crossover operator for real-coded genetic algorithms: An experimental study. International Journal of Intelligent Systems, 18(3):309--338, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  14. F. Herrera, M. Lozano, and J. L. Verdegay. Tuning fuzzy logic controllers by genetic algorithms. International Journal of Approximate Reasoning, 12(3):299--315, 1995.Google ScholarGoogle ScholarCross RefCross Ref
  15. J. H. Holland. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. Bradford book. MIT Press, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. S. M. Islam, S. Das, S. Ghosh, S. Roy, and P. N. Suganthan. An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 42(2):482--500, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Y.-l. Li, J. Zhang, and W.-n. Chen. Differential evolution algorithm with pca-based crossover. In Proceedings of the 14th annual conference companion on Genetic and evolutionary computation, pages 1509--1510. ACM, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. J. J. Liang, B.-Y. Qu, P. N. Suganthan, and A. G. Hernández-Díaz. Problem definitions and evaluation criteria for the cec2013 special session on real-parameter optimization. Technical report, 2013. Online: http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2013/CEC2013.htm.Google ScholarGoogle Scholar
  19. M. López-Ibánez, J. Dubois-Lacoste, T. Stützle, and M. Birattari. The irace package, iterated race for automatic algorithm configuration. Technical Report TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles, Belgium, 2011.Google ScholarGoogle Scholar
  20. Z. Michalewicz and M. Schoenauer. Evolutionary algorithms for constrained parameter optimization problems. Evolutionary computation, 4(1):1--32, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. D. C. Montgomery. Design and Analysis of Experiments. Wiley, 8 edition, 2012.Google ScholarGoogle Scholar
  22. K. Price, R. M. Storn, and J. A. Lampinen. Differential evolution: a practical approach to global optimization. Springer, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. A. K. Qin and P. N. Suganthan. Self-adaptive differential evolution algorithm for numerical optimization. In Proceedings of the 2005 IEEE Congress on Evolutionary Computation, volume 2, pages 1785--1791, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  24. N. J. Radcliffe. Equivalence class analysis of genetic algorithms. Complex systems, 5(2):183--205, 1991.Google ScholarGoogle Scholar
  25. D. Schlierkamp-Voosen and H. Mühlenbein. Strategy adaptation by competing subpopulations. In Parallel Problem Solving from Nature - PPSN III, pages 199--208. Springer, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. K. Sörensen. Metaheuristics - the metaphor exposed. International Transactions in Operational Research, 22(1):3--18, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  27. R. Storn and K. Price. Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11(4):341--359, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. J. Swan, S. Adriaensen, M. Bishr, E. K. Burke, J. A. Clark, P. De Causmaecker, J. Durillo, K. Hammond, E. Hart, C. G. Johnson, et al. A research agenda for metaheuristic standardization. In Proceedings of the XI Metaheuristics International Conference, pages id--1--3, 2015.Google ScholarGoogle Scholar
  29. G. Syswerda. A study of reproduction in generational and steady state genetic algorithms. Foundations of genetic algorithms, 2:94--101, 1991.Google ScholarGoogle Scholar
  30. A. H. Wright. Genetic algorithms for real parameter optimization. Foundations of genetic algorithms, 1:205--218, 1991.Google ScholarGoogle Scholar
  31. D. Zaharie. Critical values for the control parameters of differential evolution algorithms. In Proceedings of the 8th International Conference on Soft Computing (MENDEL)., 2002.Google ScholarGoogle Scholar
  32. D. Zaharie. A comparative analysis of crossover variants in differential evolution. Proceedings of IMCSIT, pages 171--181, 2007.Google ScholarGoogle Scholar
  33. M. Zambrano-Bigiarini and Y. Gonzalez-Fernandez. cec2013: Benchmark Functions for the Special Session and Competition on Real-Parameter Single Objective Optimization at CEC-2013, 2015. R package v. 0.1--5.Google ScholarGoogle Scholar

Index Terms

  1. Experimental Investigation of Recombination Operators for Differential Evolution

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        GECCO '16: Proceedings of the Genetic and Evolutionary Computation Conference 2016
        July 2016
        1196 pages
        ISBN:9781450342063
        DOI:10.1145/2908812

        Copyright © 2016 ACM

        © 2016 Association for Computing Machinery. ACM acknowledges that this contribution was authored or co-authored by an employee, contractor or affiliate of a national government. As such, the Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes only.

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 20 July 2016

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        GECCO '16 Paper Acceptance Rate137of381submissions,36%Overall Acceptance Rate1,669of4,410submissions,38%

        Upcoming Conference

        GECCO '24
        Genetic and Evolutionary Computation Conference
        July 14 - 18, 2024
        Melbourne , VIC , Australia

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader