
A Faster Algorithm for the Binary Epsilon Indicator
Based on Orthant Minimum Search

Andrey Vasin
ITMO University

49 Kronverkskiy ave.
Saint Petersburg, Russia

vasinandrey2010@gmail.com

Maxim Buzdalov
ITMO University

49 Kronverkskiy ave.
Saint Petersburg, Russia

mbuzdalov@gmail.com

ABSTRACT
The binary ε-indicator is often used to assess the quality of
solutions in multiobjective optimization, and to perform op-
timization as well. It is normally evaluated using a straight-
forward Θ(nmk) algorithm, where n and m are the number
of solutions in the arguments, and k is the number of ob-
jectives. This is considered to be fast compared to, for ex-
ample, the hypervolume indicator, which is #P-hard. How-
ever, there are efficient algorithms for the latter, especially
for small values of k, while the ε-indicator evaluation is too
slow already for n,m > 104 and for any k.

We present an efficient algorithm to compute the value
of the binary ε-indicator. It reduces the problem to a se-
ries of orthant minimum searches, which are solved by an
appropriate algorithm. For the latter, we consider two im-
plementations: the one based on a dynamic tree data struc-
ture, and the one based on the divide-and-conquer tech-
nique. In both cases, evaluation of the binary ε-indicator
takes O((n + m)k(log(n + m))max(1,k−2)) time. Empirical
evaluation shows that the second implementation has a bet-
ter performance than the first one, and both of them out-
perform the naive algorithm for large enough values of n.

Keywords
Multiobjective optimization, ε-indicator, divide-and-conquer,
orthant search, range search, performance evaluation.

1. INTRODUCTION
Many real-world optimization problems are multiobjec-

tive, that is, they require maximizing or minimizing several
objectives, which are often conflicting. In this setup, re-
searchers often want to know the set of Pareto-optimal solu-
tions to the problem. However, it is often computationally
or financially infeasible to obtain many Pareto-optimal so-
lutions, so good approximations of Pareto-optimal solution
sets are searched for.

In multiobjective optimization, an indicator is a function
from one or more solution sets to a single number. Indicators

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.

GECCO ’16 July 20-24, 2016, Denver, CO, USA

c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4206-3/16/07.

DOI: http://dx.doi.org/10.1145/2908812.2908951

are used mainly for two purposes: for assessing the quality
of a solution set, which is especially helpful in comparing
outcomes of different optimizers [17], and for optimization
itself [1, 2, 15].

One of the most important indicators, and probably the
best known one, is the hypervolume indicator [16]. It has
many useful properties: for example, the (infinite) set of
optimal solutions has the best possible value of the hyper-
volume indicator [1,2], so this indicator is naturally suited to
reduce multiobjective optimization (in the space of individ-
ual solutions) to single-objective optimization (in the space
of solution sets). Many successful algorithms are based on
the concept of hypervolume, including the ones for many-
objective optimization [3].

The hypervolume is #P-hard to be computed exactly, and
is NP-hard to be approximated [4]. However, there exist
algorithms which are very fast for small constant dimensions
(as fast as O(n logn) for two dimensions, where n is the
number of solutions), theoretically and practically [10,13].

However, it is argued that all unary indicators are not
suited very well for performance assessment of different al-
gorithms [17]. For this aim, several binary indicators were
developed so far, including the ε-indicator, which is the sub-
ject of the current paper. Formally, the additive binary ε-
indicator is the function on two point sets M (for moving)
and F (for fixed) which returns the smallest value ε, possibly
a negative one, which can be added (if the objectives are to
be maximized, or subtracted otherwise) to every coordinate
of every point of the set M , so that every point in the set
F is weakly Pareto-dominated by at least one point p ∈M .
Similarly, a multiplicative binary ε-indicator can be defined.
Unary versions of these indicators are often defined by fixing
the second argument to a certain reference point set.

The ε-indicator possesses many useful properties, includ-
ing weak dominance preservation among others. This indi-
cator is currently used in assessing performance of various
multiobjective optimizers [11,17], as well as in optimization
itself [15].

One of the appealing properties of the ε-indicator is that
its definition implies a very simple implementation, which
consists of just three simple loops, one inside another: one
for iteration over the fixed set F , one for iteration over the
moving set M , and one for iteration over coordinates. This
constitutes a simple Θ(|M |·|F |·k) algorithm with a small im-
plementation constant (we denote as k the number of objec-
tives). This complexity is considered to be “low”, especially
compared to the #P-complete hypervolume indicator. How-
ever, when the number of points grows (say, |M |, |F | ≥ 104),

613

rodkin
Typewritten Text

rodkin
Typewritten Text

rodkin
Typewritten Text
This work is licensed under a Creative Commons Attribution International 4.0 License.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F2908812.2908951&domain=pdf&date_stamp=2016-07-20

this algorithm becomes slow even for k = 2. This paper aims
at improving this situation.

One of our motivation points is that with faster algorithms
for ε-indicator it will become possible to assess the qual-
ity of Pareto front approximations during the algorithm run
(not only at the end). This would make it easier for the re-
searchers to search for multiobjective algorithms with better
performance at early stages of optimization.

The remainder of the paper is structured as follows. Sec-
tion 2 introduces the necessary definitions. In Section 3,
the problem of computation of the ε-indicator is reduced to
a certain case of the well-known orthant minimum search
problem from computation geometry. Sections 4 and 5 de-
scribe efficient algorithms for the latter, which we use in
this paper. Section 6 describes empirical evaluation of per-
formance of the naive algorithm described above and of the
proposed algorithm. Finally, Section 7 concludes.

2. DEFINITIONS
Without loss of generality, assume that we solve a multi-

objective minimization problem with the number of objec-
tives equal to k. In this case, Pareto dominance relation is
determined on two points in the objective space as follows:

a ≺ b↔ ∀i ∈ [1; k] ai ≤ bi and ∃i ∈ [1; k] ai < bi

a � b↔ ∀i ∈ [1; k] ai ≤ bi

where a ≺ b is called strict dominance and a � b is weak
dominance.

The additive binary ε-indicator, or ε-indicator for short, is
defined on two point sets M (for moving) and F (for fixed)
and equals the smallest amount ε one needs to shift M to-
wards optimality such that every point from F is weakly
dominated by at least one point from M . In the case of min-
imization, shifting a point towards optimality by ε is equiv-
alent to subtracting ε from each coordinate of the point. A
formal definition of the ε-indicator would have the following
form:

ε(M,F) = max
f∈F

min
m∈M

max
i∈[1;k]

(mi − fi).

We finish this section with the necessary definitions re-
garding orthant minimum search. An orthant is simply a
part of a k-dimensional space which consists of an inter-
section of k half-spaces, where the i-th such half-space is
defined by an inequality xi ≥ bi or xi ≤ bi, where bi is
a certain constant. It is a natural generalization of a ray
in one dimension, quadrant in two dimensions and octant
in three dimensions. In this paper, we consider only or-
thants directed towards positive infinity, that is, of the form
[b1;∞)× [b2;∞)× . . .× [bk;∞).

A computation problem of orthant search considers a set
of points in k-dimensional space, often with certain associ-
ated values. In this problem, it is needed to answer queries
associated with orthants, typically directed towards either
positive or negative infinity. Types of queries include find-
ing m arbitrary points belonging to the orthant, or finding
the sum, the minimum or the maximum of values associated
with the points belonging to the orthant. A slightly more
general problem, orthogonal range search, considers not only
orthants, but arbitrary ranges of the form [l1; r1]× [l2; r2]×
. . .× [lk; rk].

In a famous paper of Gabow, Bentley and Tarjan [8], an al-
gorithmic framework is developed for solving several types of

multidimensional geometry problems, including, among oth-
ers, range searching and orthant searching for maxima and
minima. It also considers problems with data structures sup-
porting activation – a restricted type of element addition, for
which it was known at the time of data structure initializa-
tion that the element is going to be added at some time. One
of the data structures they proposed supports d-dimensional
orthant searching for minima, using the activation modifi-
cation operation only, and has O(n(logn)d−1) preprocessing
time and space, a total of O(n(logn)d−1 log logn) activation
time and single query time of O((logn)d−1 log logn+ logn).

3. REDUCTION TO ORTHANT MINIMUM
SEARCH

A naive algorithm which computes ε(M,F) would iterate
over all points in F , for each such point f it would check ev-
ery point m in M and compute in Θ(M) the value of ε(m, f),
which requires Θ(|M | · |F | · k) time and constant additional
memory. As it is proportional to |M | · |F |, it becomes quite
slow already for |M |, |F | > 104. In the remainder of the
paper, we use n = |M | + |F | where applicable, as the run-
ning times of the proposed algorithms depends mainly on
the sum of these sizes.

To compute the ε-indicator efficiently, first note that ep-
silon values for each point in F can be computed indepen-
dently of other points:

∀f ∈ F let vf = ε(M, f) = min
m∈M

max
i∈[1;k]

(mi − fi),

and then the maximum of them should be taken:

ε(M,F) = max
f∈F

vf .

For evaluation of ε(M, f), we may split M into arbitrary
subsets M1,M2, . . . such that

⋃
iMi = M , solve the problem

separately for each subset and take the minimum. Note that
the definition of subsets can depend on f arbitrarily. We
define Mj (where 1 ≤ j ≤ k) as the set of points m such
that, for all m in Mj , maxi∈[1;k](mi − fi) = mj − fj . Then,
the definition of ε(M, f) can be rewritten as:

ε(M, f) = min
m∈M

max
i∈[1;k]

(mi − fi)

= min
j∈[1;k]

min
m∈Mj

max
i∈[1;k]

(mi − fi)

= min
j∈[1;k]

min
m∈Mj

(mj − fj)

= min
j∈[1;k]

((
min
m∈Mj

mj

)
− fj

)
.

The next step is to understand what the Mj sets really
are. For the chosen point f and any point m ∈ Mj we can
write the following inequations based on the definition of
Mj :

∀i 6= j mj − fj ≥ mi − fi,

which is equivalent to:

∀i 6= j mj −mi ≥ fj − fi. (1)

Let a projection Pj : Rk → Rk−1 be defined as follows:

Pj(x1, . . . , xk) = (xj − x1, . . . , xj − xk),

where the identity-zero coordinate xj−xj is not included in
the resulting point. With the use of the projection Pj , we

614

1: function Projection(p, k, d)
2: – builds the projection Pd(p) given the dimension k
3: q ∈ Rk−1 – the projection to be constructed
4: for i ∈ [1; d− 1] do
5: qi ← pd − pi
6: for i ∈ [d; k − 1] do
7: qi ← pd − pi+1

8: return q

Figure 1: The projection function which builds Pd(p)
for a point p and a coordinate number d

1: structure DataPoint
2: – a container for a point and its attached value
3: p ∈ Rk−1 – the point
4: v ∈ R – the value
5:
6: structure Query
7: – a container for a query and an answer for the query
8: p ∈ Rk – the point which generated the query
9: q ∈ Rk−1 – the lower bounds constituting the query

10: a ∈ R – the answer
11:
12: function EpsilonIndicator(M , F , k)
13: – evaluates the ε-indicator for the moving set M
14: – and the fixed set F given the problem dimension k

15: B ∈ R
|F |

– the upper bound on ε(M, f) for f ∈ F
16: for f ∈ F do
17: B(f)←∞
18: for d ∈ [1; k] do
19: P ← ∅ – the set of points with attached values
20: for m ∈M do
21: p← new DataPoint
22: p.p← Projection(m, k, d)
23: p.v ← md

24: P ← P ∪ {p}
25: Q← ∅ – the set of queries
26: for f ∈ F do
27: q ← new Query
28: q.p← f , q.q ← Projection(f, k, d)
29: Q← Q ∪ {q}
30: OrthantMinimumSearch(P,Q, k − 1)
31: for q ∈ Q do
32: f ← q.p
33: B(f)← min(B(f), q.a)

34: return minf∈F B(f)

Figure 2: The algorithm of reduction of the ε-
indicator evaluation to a series of orthant minimum
searches

can rewrite (1) as follows:

∀i 6= j mj −mi ≥ fj − fi ↔ Pj(f) � Pj(m),

so we can finally write:

ε(M, f) = min
j∈[1;k]

 min
m∈M

Pj(f)�Pj(m)

mj

− fj
 .

The innermost minimum is essentially a result of an or-
thant minimum search in a set of points {Pj(m) : m ∈M},

where a value of mj is associated with a point Pj(m). As
the projection Pj is the same for all points f ∈ F , we can
build the set of projected points once for each j and perform
searches for all f . The algorithm for the projection compu-
tation is given in Fig. 1, and the overall reduction algorithm
is outlined in Fig. 2.

The described algorithm can work with any algorithm for
performing orthant minimum search. A key fact (which has
a positive impact on the performance) is that, from the point
of view of the orthant minimum search, all points and all
queries are known beforehand, so any efficient offline algo-
rithm can be used.

The total running time of the parts described in Fig. 1
and 2 is Θ(nk2), and is so mainly due to building projections.
The running times of the algorithms for orthant minimum
search will typically dominate this running time.

In the following sections, we consider two algorithms for
offline orthant minimum search which can be used inside our
algorithm for the ε-indicator evaluation. Section 4 describes
an algorithm for any dimension d which is based on an online
(dynamic) algorithm for the dimension d− 1. Section 5 de-
scribes an algorithm which is based on a divide-and-conquer
idea very similar to the one used in efficient non-dominated
sorting implementations [5, 7, 9].

4. DYNAMIC TREE ALGORITHM
In [8, Theorem 3.3] it is stated that a data structure for

d-dimensional orthant searching for maximum with activa-
tion (which can obviously be applied for minima as well)
can be implemented in O(n(logn)d−1) preprocessing time
and space, a total of O(n(logn)d−1 log logn) activation time
and single query time of O((logn)d−1 log logn+logn). This
data structure uses Van Emde Boas trees [14] to achieve
O(log logn) running times for the smallest dimensions. How-
ever, these trees either have an enormous memory overhead,
or require the stored values to be compressed to small ranges
of integers.

While we believe that the above mentioned problems are
solvable, we chose a simpler data structure, the Fenwick
tree [6]. It has the O(logn) complexity for the necessary
operations, and it is very time and space efficient on mod-
ern hardware. The resulting data structure has O(n(logn)d)
preprocessing and activation time, O(n(logn)d−1) memory
requirement and O((logn)d) time for a single query. Our
implementation of the Fenwick tree is outlined in Fig. 3.
and of the entire tree data structure in Fig. 4.

In the description of the data structure, d = 0 is also
covered for the sake of completeness, which corresponds to
tracking the minimum and returning it for every query.

We use the described data structure for (d−1)-dimensional
dynamic orthant minimum search in our algorithm for offline
d-dimensional search to have one dimension reduced.

We do it by first sorting the data points and the query
points lexicographically (first comparing the first coordi-
nates, if equal the second ones, and so on), creating a data
structure for online search on coordinates in [2; d], and then
processing both data points and query points in a common
decreasing lexicographic order. As all data points are known
in advance, the data structure may support activation and
not insertion. Each processed data point is activated in the
data structure, and for each query point the minimum is
queried from the data structure. In terms of n and d, the
runtime of the preliminary sorting is O(nd+ n logn) and of

615

1: structure FenwickTree
2: – supports decreasing values at given keys
3: – and minimum queries on [y;∞) ranges
4: n ∈ N – the structure size
5: K ∈ Rn – sorted known keys for binary search
6: F ∈ Rn – the Fenwick array
7:
8: function FenwickCreate(P)
9: – creates a Fenwick tree from points P

10: Y ← {p2 : p ∈ P} – the set of all Y s
11: F ← new FenwickTree
12: F.n← |Y |
13: F.K ← UniqueSorted(Y)
14: for i ∈ [1;F.n] do
15: F.F (i)←∞
16: return F
17:
18: function FenwickIndex(F , y)
19: – finds an index in tree F for a key y
20: l← 0, r ← F.n+ 1
21: while r − l > 1 do
22: m← b(l + r)/2c
23: if F.K(m) ≥ y then
24: r ← m
25: else
26: l← m
27: return F.n+ 1− r
28:
29: procedure FenwickUpdate(F , y, v)
30: – updates the tree F at key y with value v
31: i← FenwickIndex(F, y)
32: while i ≤ F.n do
33: F.F (i)← min(F.F (i), v)
34: i← i+ (−i bitwise and i)

35:
36: function FenwickQuery(F , y)
37: – queries the tree F for a minimum in [y;∞)
38: i← FenwickIndex(F, y)
39: v ←∞
40: while i > 0 do
41: v ← min(v, F.F (i))
42: i← i− (−i bitwise and i)

43: return v

Figure 3: A Fenwick tree implementation with range
compression used in this paper

the subsequent step is O(n(logn)d−1). The outline of the
algorithm is given in Fig. 5.

For computing the value of the ε-indicator for k-dimensional
points, we perform k different (k−1)-dimensional offline or-
thant minimum searches. The total running time is thus
O(k · (nk + n logn+ n(logn)k−2)).

5. DIVIDE-AND-CONQUER ALGORITHM
In this section, we describe an alternative algorithm for

offline orthant minimum search. This algorithm is inspired
by theoretically worst-case efficient algorithms for non-dom-
inated sorting [5, 7, 9], as non-dominated sorting itself can
be seen as an application of offline orthant search.

1: structure Tree
2: d ∈ Z – the tree’s dimension
3: l ∈ R – the minimum coordinate stored
4: m ∈ R – the coordinate which separates children
5: L,R : Tree – the left and right children
6: B : Tree – the tree for d− 1
7: F : FenwickTree – the Fenwick tree for d = 1
8:
9: function TreeCreate(P , d)

10: – creates a tree from points P and dimension d
11: T ← new Tree
12: T.d← d, T.l←∞
13: if d = 1 then
14: T.F ← FenwickCreate(P)
15: else if d > 1 then
16: T.B ← TreeCreate(P, d− 1)
17: T.l← min{pd : p ∈ P}
18: T.m←Median({pd : p ∈ P})
19: PL, PM , PR ← Split(P, T.m)
20: if PL 6= ∅ then
21: T.L← TreeCreate(PL, d)
22: PR ← PM ∪ PR
23: if PR 6= ∅ then
24: T.R← TreeCreate(PR, d)

25: return T
26:
27: function TreeActivate(T , p, v)
28: – activates a point p with value v in tree T
29: if T.d = 0 then
30: T.l← min(T.l, v)
31: else if T.d = 1 then
32: FenwickUpdate(T.F, p2, v)
33: else
34: TreeActivate(T.B, p)
35: if pT.d+1 < T.m then
36: TreeActivate(T.L, p)
37: else if T.R 6= null and pT.d+1 > T.l then
38: TreeActivate(T.R, p)

39:
40: function TreeQuery(T , p)
41: – perform a query for a point p
42: if T.d = 0 then
43: return T.l
44: else if T.d = 1 then
45: return FenwickQuery(T.F, p2)
46: else
47: if pT.d+1 <= T.l then
48: return TreeQuery(T.B, p)
49: else
50: v ←∞
51: if T.R 6= null then
52: v ← TreeQuery(T.R, p)

53: if pT.d+1 < T.m then
54: v ← min(v,TreeQuery(T.L, p)

55: return v

Figure 4: A tree data structure with activation sup-
port for dynamic orthant minimum search

To get the idea how the divide-and-conquer approach works
for this problem, consider Fig. 6. In this two-dimensional fig-

616

1: procedure OrthantMinimumSearch(P , Q, d)
2: – performs search using data points P and queries Q
3: LexSort(P)
4: LexSort(Q)
5: T ← TreeCreate({p.p : p ∈ P}, d− 1)
6: iP ← |P |
7: for iQ ← {|Q|, . . . , 1} do
8: while iP > 0 and Q(iQ).q ≤lex P (iP).p do
9: TreeActivate(T, P (iP).p, P (iP).v)

10: iP ← iP − 1

11: a← TreeQuery(T,Q(iQ).q)
12: Q(iQ).a← min(Q(iQ).a, a)

Figure 5: The main orthant minimum search proce-
dure using the dynamic tree data structure

x2

x1

s2

Figure 6: An illustration of the divide-and-conquer
approach for orthant minimum search

ure, white points correspond to queries, while black points
correspond to data points. A vertical line x2 = s2 splits the
set of white points Q into two sets QL and QR, and the set
of black points P into two sets PL and PR, such that:

• ∀q ∈ QL q2 < s2; ∀q ∈ QR q2 > s2;

• ∀p ∈ PL p2 < s2; ∀p ∈ PR p2 > s2;

• |QL|+ |PL| = |QR|+ |PR|.

One can easily see that for every query point q ∈ QR,
one can consider the points p ∈ PR only, because for every
p ∈ PL it holds that p2 < q2 and p is not covered by the
query q. What is more, for every query q ∈ QL and every
point p ∈ PR it holds that q2 < p2, so the algorithm does
not have to check this condition anymore.

If we call our procedure Algo(P,Q, d), where d is the
current dimension, then its main branch, after finding a me-
dian (the value s2 in the example above) and making splits,
consists of three recursive calls, namely, Algo(PL, QL, d),
Algo(PR, QR, d), Algo(PR, QL, d−1). If the running time
can be expressed as T (Algo(P,Q, d)) = Td(|P | + |Q|), we
can estimate it as follows:

Td(n) ≤ O(n) + 2Td(n/2) + Td−1(n/2),

which, provided that Td−1(n) = O
(
n(logn)d−2

)
, gives us

Td(n) = O
(
n(logn)d−1

)
.

The simplified description above misses three points:

1. The recursion needs to be terminated for small values
of d. We deal with it by solving the problem for d = 2
in O(n logn) using the idea from Section 4, namely,

sorting all the points lexicographically and using the
Fenwick tree (see Fig. 3) for handling one-dimensional
queries.

2. Special handling is necessary for the boundary cases
|P | ≤ 1 or |Q| ≤ 1. If one of the sets is empty, nothing
should be done. The case of unit size is handled by
simply testing all points with all queries in remaining
coordinates [1; d]. The running time of this case would
be O(|P | · |Q| · d), which is the same asymptotically as
O(max(|P |, |Q|) · d) if |P | = 1 or |Q| = 1.

3. Treatment of equal coordinate values. There can be
many values equal to the median, which may render
the split uneven. This issue is solved by splitting each
set S not in two but in three sets: SL with coordinates
less than the median, SM with coordinates equal to the
median and SR with coordinates greater than the me-
dian. This ensures that, when we split the sets P and
Q at their common median in the current coordinate,
the subsets will satisfy inequations 2(|PL| + |QL|) ≤
|P | + |Q| and 2(|PR| + |QR|) ≤ |P | + |Q|, which is
crucial for the running time estimation.

The overall algorithm is outlined in Fig. 7. Its running
time is O(n logn + nd + n(logn)d−1) for a d-dimensional
problem, and it requires O(n+ d) additional memory only.

6. EMPIRICAL EVALUATION
We conducted empirical evaluation of the proposed al-

gorithm with the orthant minimum search algorithms de-
scribed in Sections 4 and 5 and of the naive algorithm for
computing the ε-indicator. We used dimensions in the range
[2; 6]. We also used equal sizes of both moving and fixed
point sets. These sizes were taken from the set {100, 310,
1000, 3100, 10000, 31000} to have the ratio between the
consecutive sizes be approximately equal to

√
10. The lower

bound is chosen to be equal to one of the typical generation
sizes in evolutionary algorithms, while the upper bound is
chosen for the sole reason of having feasible running times
of experiments.

To generate points, we used two ways: uniformly ran-
dom points from the [0; 1]k hypercube, and random copla-
nar points residing in the x1 + . . . + xk = k hyperplane,
with coordinates [2; k] taken uniformly at random from the
[0; 1] range. By using random points from the hypercube,
we hope to approximate the behavior of all the algorithms in
initial stages of optimization. Similarly, we hope to approx-
imate the behaviour in later stages of optimization, when
the points have almost converged to the Pareto optimal set,
by using coplanar points. For each configuration, we report
the average running time over 20 independent runs.

The plots for random points are presented in Fig. 8–12
for dimensions 2–6 correspondingly, and the raw data in
Tables 1–5. All times are given in seconds, all figures have
logarithmic scales in both axes. We present only the results
for the random points, as the data for the coplanar points
differs only by at most 10% with two exceptions (16% for
the tree-based algorithm, n = 310, k = 2 and 11% for the
same algorithm, n = 100, k = 5). This in turn suggests
that the speedup or slowdown depends only on the number
of points and the dimension.

From analyzing slopes of the plots, one can immediately
see that the proposed algorithm, with both algorithms used

617

1: procedure AnswerQueries(P , Q, d)
2: if P = ∅ or Q = ∅ then
3: return
4: else if |P | = 1 or |Q| = 1 then
5: for q ∈ Q, p ∈ P do
6: if q.q �d p.q then
7: q.a← min(q.a, p.v)

8: else if d = 2 then
9: F ← FenwickCreate({p.p : p ∈ P})

10: iP ← |P |
11: for iQ ← {|Q|, . . . , 1} do
12: while iP > 0 and Q(iQ).q ≤lex2 P (iP).p do
13: FenwickUpdate(F, P (iP).p2, P (iP).v)
14: iP ← iP − 1

15: a← FenwickQuery(T,Q(iQ).q2)
16: Q(iQ).a← min(Q(iQ).a, a)

17: else if maxq∈Q q.qd ≤ minp∈P p.pd then
18: AnswerQueries(P,Q, d− 1)
19: else
20: m←Median({p.pd : p ∈ P} ∪ {q.qd : q ∈ Q})
21: PL, PM , PR ← Split(P,m, d)
22: QL, QM , QR ← Split(Q,m, d)
23: AnswerQueries(PR, QR, d)
24: AnswerQueries(PL, QL, d)
25: AnswerQueries(PM ∪ PR, QL ∪QM , d− 1)

26: procedure OrthantMinimumSearch(P , Q, d)
27: – performs search using data points P and queries Q
28: LexSort(P)
29: LexSort(Q)
30: if d = 1 then
31: iP ← |P |
32: m←∞
33: for iQ ← {|Q|, . . . , 1} do
34: while iP > 0 and Q(iQ).q1 ≤ P (iP).p1 do
35: m← min(m,P (iP).v)
36: iP ← iP − 1

37: Q(iQ).a← min(Q(iQ).a,m)

38: else
39: AnswerQueries(P,Q, d)

Figure 7: The orthant minimum search procedure
using the divide-and-conquer algorithm

for orthant minimum search, indeed has a better asymptotic
behavior compared to the naive algorithm.

For dimensions 2 and 3, the proposed algorithm is seen to
outperform the naive algorithm for all considered problem
sizes, although for n = 100 and k = 3 the running times are
almost coinciding. For these dimensions, there is no visible
difference between the orthant minimum search algorithms.

For higher dimensions, two phenomena can be seen. First,
the higher the dimension, the worse the dynamic tree imple-
mentation of the proposed algorithm behaves compared to
the divide-and-conquer implementation: the plots remain
parallel, but the difference in vertical offsets grows. Second,
the proposed algorithm (here we consider the divide-and-
conquer implementation) starts to outperform the naive al-
gorithm starting from a certain problem size only: from ap-
proximately 350 for k = 4, from 1000 for k = 5, and from
3000 for k = 6 (numbers are slightly interpolated).

7. CONCLUSION
We presented an algorithm for faster computation of the

additive binary ε-indicator. This algorithm is based on re-
duction of this problem to a series of orthant minimum
searches. To perform the latter, we used two approaches:
the one based on the classic tree-based data structure for
orthant and range queries, and the one based on the multi-
dimensional divide-and-conquer idea.

Empirical evaluation showed that the proposed algorithm
works faster than the naive one, especially in small dimen-
sions (k = 2 or 3), but in higher dimensions as well for larger
n due to better asymptotic of the running time. For the or-
thant minimum search implementations, the one based on
the divide-and-conquer idea performs better, which is no-
ticeable especially in higher dimensions. The running time
ratio of the naive algorithm to the divide-and-conquer one
reaches almost 15 on n = 1000 and k = 2, almost 6 on
n = 31000, k = 6, and almost 316 (!) on n = 31000, k = 2.

The results of this paper are obviously not limited to the
additive ε-indicator: the multiplicative ε-indicator, defined
first in [17], can be computed using the same algorithm after
applying logarithm to all coordinates.

This paper basically allows researchers to assess the qual-
ity of Pareto front approximations not only at the end of the
algorithm run, but during the run as well, without incurring
a big performance overhead. This, in turn, may make it
easier to search for multiobjective optimizers with not only
good overall solution quality, but with good “fixed-budget”
performance as well, which has immediate application for
the practitioners.

Algorithm developers may also benefit from the results
of this paper. For example, algorithms similar to the IBEA
algorithm [15] use queries to the binary indicator of the form
I(X \ {x}, {x}) to assign fitness to the solutions. In fact,
IBEA itself uses a different, but computationally very similar
measure:

F (x) =
∑

y∈X\{x}

−e−I({y},{x})/κ.

These algorithms can be made faster than the obviousO(n2k)
implementation (where n = |X| and k is the dimension) by
using the ideas presented in this paper. More precisely, we
can process all F (x) queries for x ∈ X simultaneously in
O
(
nk(logn)k−2

)
by implementing an equivalent of the ND-

HelperA procedure from [5], while the AnswerQueries
procedure from this paper (Fig. 7) is equivalent to the ND-
HelperB procedure. We intend to test this idea in the very
near future.

Another important component for the future work is to
adapt the ideas of this algorithm to other indicators used in
multiobjective optimization, and to make these algorithms,
and the similar ones, even faster. One degree of freedom,
which was not exploited in this paper to the very end, is to
use advanced techniques, such as Van Emde Boas trees or
fractional cascading, at the low levels of the proposed algo-
rithms and data structures. While we have some sceptical
expectations about using Van Emde Boas trees in the clas-
sic way in the tree-based implementation considered in this
paper, as the hidden constant grows significantly with k, a
more appropriate application may speed up the algorithm
significantly. One of the inspirations for this work would
be a paper of Nekrich [12] which explains how to perform
non-dominated sorting in three dimensions in o(n logn).

618

102 103 104

10−5

10−2

101

Number of points in the arguments

R
u
n
n
in

g
ti

m
e naive

div-conq
tree

Figure 8: Plots for random points, k = 2

102 103 104

10−4

10−2

100

Number of points in the arguments

R
u
n
n
in

g
ti

m
e naive

div-conq
tree

Figure 9: Plots for random points, k = 3

102 103 104

10−4

10−2

100

Number of points in the arguments

R
u
n
n
in

g
ti

m
e naive

div-conq
tree

Figure 10: Plots for random points, k = 4

102 103 104

10−4

10−2

100

Number of points in the arguments

R
u
n
n
in

g
ti

m
e naive

div-conq
tree

Figure 11: Plots for random points, k = 5

102 103 104

10−4

10−2

100

Number of points in the arguments

R
u
n
n
in

g
ti

m
e naive

div-conq
tree

Figure 12: Plots for random points, k = 6

n naive tree div-conq

100 3.40 · 10−5 1.70 · 10−5 1.20 · 10−5

310 3.48 · 10−4 8.50 · 10−5 5.90 · 10−5

1000 3.80 · 10−3 3.54 · 10−4 2.47 · 10−4

3100 3.83 · 10−2 1.24 · 10−3 9.10 · 10−4

10000 3.94 · 10−1 4.64 · 10−3 3.33 · 10−3

31000 3.75 · 100 1.77 · 10−2 1.26 · 10−2

Table 1: Data for random points, k = 2

n naive tree div-conq

100 5.00 · 10−5 5.10 · 10−5 4.70 · 10−5

310 5.21 · 10−4 2.16 · 10−4 1.96 · 10−4

1000 5.47 · 10−3 8.59 · 10−4 7.75 · 10−4

3100 5.15 · 10−2 3.02 · 10−3 2.68 · 10−3

10000 5.33 · 10−1 1.10 · 10−2 1.01 · 10−2

31000 5.12 · 100 4.49 · 10−2 4.18 · 10−2

Table 2: Data for random points, k = 3

n naive tree div-conq

100 6.70 · 10−5 2.40 · 10−4 2.08 · 10−4

310 6.74 · 10−4 9.69 · 10−4 8.09 · 10−4

1000 6.94 · 10−3 4.00 · 10−3 3.36 · 10−3

3100 6.65 · 10−2 1.56 · 10−2 1.27 · 10−2

10000 6.85 · 10−1 7.15 · 10−2 5.03 · 10−2

31000 6.59 · 100 3.57 · 10−1 2.05 · 10−1

Table 3: Data for random points, k = 4

n naive tree div-conq

100 8.50 · 10−5 1.22 · 10−3 4.71 · 10−4

310 8.05 · 10−4 5.20 · 10−3 2.12 · 10−3

1000 8.16 · 10−3 2.47 · 10−2 9.75 · 10−3

3100 7.73 · 10−2 1.30 · 10−1 4.09 · 10−2

10000 8.03 · 10−1 7.11 · 10−1 1.78 · 10−1

31000 7.71 · 100 3.33 · 100 7.53 · 10−1

Table 4: Data for random points, k = 5

n naive tree div-conq

100 9.80 · 10−5 4.22 · 10−3 7.77 · 10−4

310 9.22 · 10−4 2.28 · 10−2 3.91 · 10−3

1000 9.44 · 10−3 1.43 · 10−1 2.00 · 10−2

3100 9.38 · 10−2 7.99 · 10−1 9.35 · 10−2

10000 9.32 · 10−1 4.60 · 100 4.51 · 10−1

31000 8.95 · 100 2.33 · 101 2.06 · 100

Table 5: Data for random points, k = 6

619

Finally, thanks for the reviewers who mentioned that in
practical applications the fixed set typically does not change
and its size is often much larger than the size of any moving
set, the efficient way to preprocess the fixed set and to speed
up evaluation of moving sets is one more necessary piece
of the future work. This may be a good showcase for the
tree-based orthant search algorithm, as in this case most of
the time will be spent in answering queries and not during
construction of the tree, which can be done once.

The source code as well as full logs of experiments can be
found at GitHub.1

Acknowledgments
This work was financially supported by the Government of
Russian Federation, Grant 074-U01.

8. REFERENCES
[1] A. Auger, J. Bader, D. Brockhoff, and E. Zitzler.

Theory of the hypervolume indicator: Optimal
µ-distributions and the choice of the reference point.
In Proceedings of Foundations of Genetic Algorithms,
pages 87–102. ACM, 2009.

[2] A. Auger, J. Bader, D. Brockhoff, and E. Zitzler.
Hypervolume-based multiobjective optimization:
Theoretical foundations and practical implications.
Theoretical Computer Science, 425:75–103, 2012.

[3] J. Bader and E. Zitzler. HypE: An algorithm for fast
hypervolume-based many-objective optimization.
Evolutionary Computation, 19(1):45–76, 2011.

[4] K. Bringmann and T. Friedrich. Approximating the
least hypervolume contributor: NP-hard in general,
but fast in practice. In Proceedings of the 5th
International Conference on Evolutionary
Multi-Criterion Optimization, pages 6–20, 2009.

[5] M. Buzdalov and A. Shalyto. A provably
asymptotically fast version of the generalized Jensen
algorithm for non-dominated sorting. In Parallel
Problem Solving from Nature – PPSN XIII, number
8672 in Lecture Notes in Computer Science, pages
528–537. Springer, 2014.

[6] P. M. Fenwick. A new data structure for cumulative
frequency tables. Software: Practice and Experience,
24(3):327–336, 1994.

1https://github.com/mbuzdalov/papers/tree/master/2016-
gecco-epsilon

[7] F.-A. Fortin, S. Grenier, and M. Parizeau.
Generalizing the improved run-time complexity
algorithm for non-dominated sorting. In Proceedings of
Genetic and Evolutionary Computation Conference,
pages 615–622. ACM, 2013.

[8] H. N. Gabow, J. L. Bentley, and R. E. Tarjan. Scaling
and related techniques for geometry problems. In
Proceedings of the sixteenth annual ACM symposium
on Theory of computing, pages 135–143, 1984.

[9] M. T. Jensen. Reducing the run-time complexity of
multiobjective EAs: The NSGA-II and other
algorithms. Transactions on Evolutionary
Computation, 7(5):503–515, 2003.

[10] R. Lacour, K. Klamroth, and C. M. Fonseca. A box
decomposition algorithm to compute the hypervolume
indicator. http://arxiv.org/abs/1510.01963, 2015.

[11] A. J. Nebro and J. J. Durillo. On the effect of
applying a steady-state selection scheme in the
multi-objective genetic algorithm NSGA-II. In
Nature-Inspired Algorithms for Optimisation, number
193 in Studies in Computational Intelligence, pages
435–456. Springer Berlin Heidelberg, 2009.

[12] Y. Nekrich. A fast algorithm for three-dimensional
layers of maxima problem. In Algorithms and Data
Structures, number 6844 in Lecture Notes in
Computer Science, pages 607–618. 2011.

[13] L. Russo and A. Francisco. Quick hypervolume. IEEE
Transactions on Evolutionary Computation, 18(4),
2014.

[14] P. Van Emde Boas, R. Kaas, and E. Zijlstra. Design
and implementation of an efficient priority queue.
Mathematical Systems Theory, 10:99–127, 1976.

[15] E. Zitzler and S. Künzli. Indicator-based selection in
multiobjective search. In Parallel Problem Solving
from Nature – PPSN VIII, number 3242 in Lecture
Notes in Computer Science, pages 832–842. 2004.

[16] E. Zitzler and L. Thiele. Multiobjective evolutionary
algorithms: A comparative case study and the
Strength Pareto approach. IEEE Transactions on
Evolutionary Computation, 3(4):257–271, 1999.

[17] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca,
and V. Grunert da Fonseca. Performance assessment
of multiobjective optimizers: An analysis and review.
IEEE Transactions on Evolutionary Computation,
7(2):117–132, 2003.

620

