skip to main content
10.1145/2908961.2926992acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
tutorial

Generative and Developmental Systems Tutorial

Published:20 July 2016Publication History
First page image

References

  1. Joshua E. Auerbach and Josh C. Bongard. On the Relationship Between Environmental and Mechanical Complexity in Evolved Robots.Proceedings of the 13th International Conference on the Synthesis and Simulation of Living Systems (ALife XIII). East Lansing, MI, July, 2012.Google ScholarGoogle Scholar
  2. Joshua E. Auerbach and Josh C. Bongard. Evolving Complete Robots with CPPN-NEAT: The Utility of Recurrent Connections. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2011). Dublin, Ireland, July, 201 Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bongard, J. C. and R. Pfeifer (2003) Evolving Complete Agents Using Artificial Ontogeny. In: Hara, F. and R. Pfeifer, (eds.), Morpho-functional Machines: The New Species (Designing Embodied Intelligence) Springer-Verlag, pp. 237--258.Google ScholarGoogle ScholarCross RefCross Ref
  4. Cheney N, MacCurdy R, Clune J, Lipson H. Unshackling evolution: evolving soft robots with multiple materials and a powerful generative encoding. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2013). Amsterdam, July 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Clune J, Pennock RT, and Ofria C. The sensitivity of HyperNEAT to different geometric representations of a problem. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2009). New York, NY: ACM, 2009 Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Clune J, Stanley KO, Pennock RT, Ofria C (2011) On the performance of indirect encoding across the continuum of regularity. IEEE Transactions on Evolutionary Computation. 15(3): 346--367. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Oliver J. Coleman, Evolving Neural Networks for Visual Processing, Undergraduate Honours Thesis (Bachelor of Computer Science, University of New South Wales School of Computer Science and Engineering), 2010Google ScholarGoogle Scholar
  8. D'Ambrosio, D. B. and Stanley, K. O. A Novel Generative Encoding for Exploiting Neural Network Sensor and Output Geometry. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2007). New York, NY: ACM, 2007 Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. D'Ambrosio, D. B. and Stanley, K. O. Generative Encoding for Multiagent Learning. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2008). New York, NY: ACM, 2007 Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Dawkins, R.: The Blind Watchmaker. Longman, Essex, U.K. (1986)Google ScholarGoogle Scholar
  11. Gauci, J. and Stanley, K. O. Generating Large-Scale Neural Networks Through Discovering Geometric Regularities. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2007). New York, NY: ACM, 2007 Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Gauci, J. and Stanley, K. O. A Case Study on the Critical Role of Geometric Regularity in Machine Learning. In: Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (AAAI-2008). Menlo Park, CA: AAAI Press, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Gauci, J. and Stanley, K. O. Autonomous Evolution of Topographic Regularities in Artificial Neural Networks. In: Neural Computation journal 22(7), pages 1860--1898. Cambridge, MA: MIT Press. 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Gruau, F. Neural network synthesis using cellular encoding and the genetic algorithm. PhD thesis, Laboratoire de L'informatique du Paralllisme, Ecole Normale Supriere de Lyon, Lyon, France, 1994.Google ScholarGoogle Scholar
  15. Hornby, G.. S. and Pollack, J. B. The Advantages of Generative Grammatical Encodings for Physical Design. In: Congress on Evolutionary Computation. 2001.Google ScholarGoogle ScholarCross RefCross Ref
  16. Nate Kohl and Risto Miikkulainen (2009). Evolving Neural Networks for Strategic Decision-Making Problems. Neural Networks, Special issue on Goal-Directed Neural Systems. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. T. Kowaliw and W. Banzhaf, Augmenting Artificial Development with Local Fitness, In IEEE CEC 2009 Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Lindenmayer, A. (1968). Mathematical models for cellular interaction in development: Parts I and II. Journal of Theoretical Biology, 18, 280--299, 300--315.Google ScholarGoogle ScholarCross RefCross Ref
  19. Lindenmayer, A. (1974). Adding continuous components to L-systems. In G. Rozenberg & A. Salomaa (Eds.), L systems: Lecture notes in computer science 15 (pp. 53--68). Heidelberg, Germany: Springer-Verlag. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Mattiussi, C., and Floreano, D. 2004. Evolution of Analog Networks using Local String Alignment on Highly Reorganizable Genomes. In: Proceedings of the 2004 NASA/DoD Conference on Evolvable Hardware (EH' 2004).Google ScholarGoogle ScholarCross RefCross Ref
  21. Dawkins, R.: The Blind Watchmaker. Longman, Essex, U.K. (1986)Google ScholarGoogle Scholar
  22. Gauci, J. and Stanley, K. O. Generating Large-Scale Neural Networks Through Discovering Geometric Regularities. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2007). New York, NY: ACM, 2007 Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Gauci, J. and Stanley, K. O. A Case Study on the Critical Role of Geometric Regularity in Machine Learning. In: Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (AAAI-2008). Menlo Park, CA: AAAI Press, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Gauci, J. and Stanley, K. O. Autonomous Evolution of Topographic Regularities in Artificial Neural Networks. In: Neural Computation journal 22(7), pages 1860--1898. Cambridge, MA: MIT Press. 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Gruau, F. Neural network synthesis using cellular encoding and the genetic algorithm. PhD thesis, Laboratoire de L'informatique du Paralllisme, Ecole Normale Supriere de Lyon, Lyon, France, 1994.Google ScholarGoogle Scholar
  26. Hornby, G.. S. and Pollack, J. B. The Advantages of Generative Grammatical Encodings for Physical Design. In: Congress on Evolutionary Computation. 2001.Google ScholarGoogle ScholarCross RefCross Ref
  27. Nate Kohl and Risto Miikkulainen (2009). Evolving Neural Networks for Strategic Decision-Making Problems. Neural Networks, Special issue on Goal-Directed Neural Systems. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. T. Kowaliw and W. Banzhaf, Augmenting Artificial Development with Local Fitness, In IEEE CEC 2009 Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Lindenmayer, A. (1968). Mathematical models for cellular interaction in development: Parts I and II. Journal of Theoretical Biology, 18, 280--299, 300--315.Google ScholarGoogle ScholarCross RefCross Ref
  30. Lindenmayer, A. (1974). Adding continuous components to L-systems. In G. Rozenberg & A. Salomaa (Eds.), L systems: Lecture notes in computer science 15 (pp. 53--68). Heidelberg, Germany: Springer-Verlag. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Mattiussi, C., and Floreano, D. 2004. Evolution of Analog Networks using Local String Alignment on Highly Reorganizable Genomes. In: Proceedings of the 2004 NASA/DoD Conference on Evolvable Hardware (EH' 2004).Google ScholarGoogle ScholarCross RefCross Ref
  32. Miller J. F. Evolving a self-repairing, self-regulating, French flag organism. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO 2004), Springer LNCS 3102 (2004) 129--139.Google ScholarGoogle ScholarCross RefCross Ref
  33. Nijhout, H. F., & Emlen, D. J. (1998). Competition among body parts in the development and evolution of insect morphology. Proceedings of the National Academy of Sciences of the USA, 95, 3685--3689.Google ScholarGoogle ScholarCross RefCross Ref
  34. Raff, R. A. (1996). The shape of life: Genes, development, and the evolution of animal form. Chicago: The University of Chicago Press.Google ScholarGoogle Scholar
  35. Reisinger, J. and Miikkulainen, R. Acquiring Evolvability through Adaptive Representations. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2007). New York, NY: ACM, 2007 Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Sebastian Risi, Daniel Cellucci, Hod Lipson (2013).Ribosomal Robots: Evolved Designs Inspired by Protein Folding. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2013). New York, NY: ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Roggen, D. and Federici, D. Multi-cellular development: is there scalability and robustness to gain? In: Proceedings of PPSN VIII 2004 The 8th International Conference on Parallel Problem Solving from Nature, Xin Yao and al. ed., pp 391--400, (2004).Google ScholarGoogle ScholarCross RefCross Ref
  38. Jimmy Secretan, Nicholas Beato, David B. D.Ambrosio, Adelein Rodriguez, Adam Campbell, Jeremiah T. Folsom-Kovarik, and Kenneth O. Stanley (2011). Picbreeder: A Case Study in Collaborative Evolutionary Exploration of Design Space. Evolutionary Computation, 19(3): 345--371, Cambridge, MA: MIT Press Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Stanley, K. O. and Miikkulainen, R. Evolving neural networks through augmenting topologies. Evolutionary Computation, 10:99--127, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Stanley, K. O. and Miikkulainen, R. Competitive coevolution through evolutionary complexification. Journal of Artificial Intelligence Research, 21:63--100, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Stanley, K. O. and Miikkulainen, R. A taxonomy for artificial embryogeny. Artificial Life, 9(2):93--130, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Stanley, K. O. Compositional Pattern Producing Networks: A Novel Abstraction of Development. In: Genetic Programming and Evolvable Machines Special Issue on Developmental Systems 8(2): 131--162. New York, NY: Springer, 2007 Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Stanley, K. O., D'Ambrosio, D.B., and Gauci, J. A Hypercube-Based Indirect Encoding for Evolving Large-Scale Neural Networks. Artificial Life journal 15(2), 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Turing, A. (1952). The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society B, 237, 37--72.Google ScholarGoogle ScholarCross RefCross Ref
  45. Waddington, C. H. (1942). Canalization of Development and the Inheritance of Acquired Characters. Nature, 150, 563.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Generative and Developmental Systems Tutorial

              Recommendations

              Comments

              Login options

              Check if you have access through your login credentials or your institution to get full access on this article.

              Sign in
              • Published in

                cover image ACM Conferences
                GECCO '16 Companion: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion
                July 2016
                1510 pages
                ISBN:9781450343237
                DOI:10.1145/2908961

                Copyright © 2016 Owner/Author

                Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

                Publisher

                Association for Computing Machinery

                New York, NY, United States

                Publication History

                • Published: 20 July 2016

                Check for updates

                Qualifiers

                • tutorial

                Acceptance Rates

                GECCO '16 Companion Paper Acceptance Rate137of381submissions,36%Overall Acceptance Rate1,669of4,410submissions,38%

                Upcoming Conference

                GECCO '24
                Genetic and Evolutionary Computation Conference
                July 14 - 18, 2024
                Melbourne , VIC , Australia
              • Article Metrics

                • Downloads (Last 12 months)0
                • Downloads (Last 6 weeks)0

                Other Metrics

              PDF Format

              View or Download as a PDF file.

              PDF

              eReader

              View online with eReader.

              eReader