skip to main content
10.1145/2930889.2930909acmconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article

Positive Root Isolation for Poly-Powers

Published:20 July 2016Publication History

ABSTRACT

We consider a class of univariate real functions---poly-powers---that extend integer exponents to real algebraic exponents for polynomials. Our purpose is to isolate positive roots of such a function into disjoint intervals, which can be further easily computed up to any desired precision. To this end, we first classify poly-powers into simple and non-simple ones, depending on the number of linearly independent exponents. For the former, we present a complete isolation method based on Gelfond--Schneider theorem. For the latter, the completeness depends on Schanuel's conjecture. Finally experiential results demonstrate the effectivity of the proposed method.

References

  1. M. Achatz, S. McCallum, and V. Weispfenning. Deciding polynomial--exponential problems. In J. R. Sendra and L. González-Vega, editors, Proc. ISSAC 2008, pages 215--222, New York, 2008. ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. J. Ax. On Schanuel's conjectures. Annals of Mathematics, 93(2):252--268, 1971.Google ScholarGoogle Scholar
  3. J. Bak, D. Leviatan, D. Newman, and J. Tzimbalario. Generalized polynomial approximation. Israel Journal of Mathematics, 15(4):337--349, 1973.Google ScholarGoogle ScholarCross RefCross Ref
  4. V. Chonev, J. Ouaknine, and J. Worrell. On the Skolem problem for continuous linear dynamical systems. In Proc. ICALP 2016, 2016. to appear.Google ScholarGoogle Scholar
  5. G. E. Collins and A. G. Akritas. Polynomial real root isolation using Descarte's rule of signs. In Proc. SYMSAC 1976, pages 272--275, New York, 1976. ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. G. E. Collins and R. Loos. Polynomial real root isolation by differentiation. In Proc. SYMSAC 1976, pages 15--25, New York, 1976. ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. M. Coste, T. Lajous-Loaeza, H. Lombardic, and M.-F. Roy. Generalized Budan--Fourier theorem and virtual roots. Journal of Complexity, 21(4):479--486, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. F. Cucker and S. Smale. Complexity estimates depending on condition and round-off error. Journal of the ACM, 46(1):113--184, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. J.-P. Dedieu and J.-C. Yakoubsohn. Computing the real roots of a polynomial by the exclusion algorithm. Numerical Algorithms, 4(1):1--24, 1993.Google ScholarGoogle ScholarCross RefCross Ref
  10. A. Gupta, P. Kamath, N. Kayal, and R. Saptharishi. Approaching the chasm at depth four. In Proc. CCC 2013, pages 65--73, Los Alamitos, CA, 2013. IEEE Computer Society.Google ScholarGoogle ScholarCross RefCross Ref
  11. G. B. Gustafson. Systems of Differential Equations. 1998. available at www.math.utah.edu/gustafso/s2013/2250/systemsExamplesTheory2008.pdf.Google ScholarGoogle Scholar
  12. R. Loos. Computing in algebraic extensions. In B. Buchberger, G. E. Collins, and R. Loos, editors, Computer Algebra: Symbolic and Algebraic Computation, 2nd Edition, pages 173--187, Berlin, 1983. Springer.Google ScholarGoogle Scholar
  13. S. McCallum and V. Weispfenning. Deciding polynomial-transcendental problems. Journal of Symbolic Computation, 47(1):16--31, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. I. Newton. De analysi per aequationes numero terminorum infinitas. William Jones, London, 1711.Google ScholarGoogle Scholar
  15. D. Richardson. Towards computing non algebraic cylindrical decompositions. In S. M. Watt, editor, Proc. ISSAC 1991, pages 247--255, New York, 1991. ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. D. Richardson. How to recognize zero. Journal of Symbolic Computation, 24(6):627--645, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. C. L. Siegel. Transcendental Numbers. Princeton University Press, Princeton, NJ, 1949.Google ScholarGoogle Scholar
  18. S. Smale. Newton's method estimates from data at one point. In R. E. Ewing, K. I. Gross, and C. F. Martin, editors, The Merging of Disciplines: New Directions in Pure, Applied, and Computational Mathematics, pages 185--196, Berlin, 1986. Springer.Google ScholarGoogle Scholar
  19. A. Strzebonski. Real root isolation for exp--log functions. In J. R. Sendra and L. González-Vega, editors, Proc. ISSAC 2008, pages 303--313, New York, 2008. ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. A. Strzebonski. Real root isolation for tame elementary functions. In J. R. Johnson, H. Park, and E. Kaltofen, editors, Proc. ISSAC 2009, pages 341--350, New York, 2009. ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. A. Strzebonski. Cylindrical decomposition for systems transcendental in the first variable. Journal of Symbolic Computation, 46(11):1284--1290, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. A. Tarski. A Decision Method for Elementary Algebra and Geometry. University of California Press, Berkeley, 2 edition, 1951.Google ScholarGoogle Scholar
  23. M. Xu, Z.-B. Li, and L. Yang. Quantifier elimination for a class of exponential polynomial formulas. Journal of Symbolic Computation, 68(1):146--168, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. M. Xu, C. Mu, Z. Zeng, and Z.-B. Li. A heuristic approach to positive root isolation for multiple power sums. Journal of Universal Computer Science, 16(14):1912--1926, 2010.Google ScholarGoogle Scholar
  25. L. Yang. Solving harder problems with lesser mathematics. In Proc. 10th Asian Technology Conference in Mathematics, pages 37--46, Blacksburg, 2005. ATCM Inc.Google ScholarGoogle Scholar
  26. C. Yap, M. Sagraloff, and V. Sharma. Analytic root clustering: A complete algorithm using soft zero tests. In P. Bonizzoni, V. Brattka, and B. Löwe, editors, Proc. CiE 2013, LNCS 7921, pages 433--444, Berlin, 2013. Springer.Google ScholarGoogle Scholar

Index Terms

  1. Positive Root Isolation for Poly-Powers

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        ISSAC '16: Proceedings of the ACM on International Symposium on Symbolic and Algebraic Computation
        July 2016
        434 pages
        ISBN:9781450343800
        DOI:10.1145/2930889

        Copyright © 2016 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 20 July 2016

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        Overall Acceptance Rate395of838submissions,47%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader