skip to main content
10.1145/2930889.2930920acmconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article

Fast Polynomial Multiplication over F260

Published: 20 July 2016 Publication History

Abstract

Can post-Schönhage-Strassen multiplication algorithms be competitive in practice for large input sizes? So far, the GMP library still outperforms all implementations of the recent, asymptotically more efficient algorithms for integer multiplication by Fürer, De--Kurur--Saha--Saptharishi, and ourselves. In this paper, we show how central ideas of our recent asymptotically fast algorithms turn out to be of practical interest for multiplication of polynomials over finite fields of characteristic two. Our Mathemagix implementation is based on the automatic generation of assembly codelets. It outperforms existing implementations in large degree, especially for polynomial matrix multiplication over finite fields.

References

[1]
S. Ballet and J. Pieltant. On the tensor rank of multiplication in any extension of F2. J. Complexity, 27(2):230--245, 2011.
[2]
L. I. Bluestein. A linear filtering approach to the computation of discrete Fourier transform. IEEE Trans. Audio Electroacoust., 18(4):451--455, 1970.
[3]
M. Bodrato. Towards optimal Toom-Cook multiplication for univariate and multivariate polynomials in characteristic 2 and 0. In C. Carlet and B. Sunar, editors, Arithmetic of Finite Fields, volume 4547 of Lect. Notes Comput. Sci., pages 116--133. Springer Berlin Heidelberg, 2007.
[4]
R. P. Brent, P. Gaudry, E. Thomé, and P. Zimmermann. Faster multiplication in GF(2){x}. In A. van der Poorten and A. Stein, editors, Algorithmic Number Theory, volume 5011 of Lect. Notes Comput. Sci., pages 153--166. Springer Berlin Heidelberg, 2008.
[5]
J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation of complex Fourier series. Math. Computat., 19:297--301, 1965.
[6]
R. Crandall and B. Fagin. Discrete weighted transforms and large-integer arithmetic. Math. Comp., 62(205):305--324, 1994.
[7]
A. De, P. P. Kurur, C. Saha, and R. Saptharishi. Fast integer multiplication using modular arithmetic. SIAM J. Comput., 42(2):685--699, 2013.
[8]
P. Duhamel and M. Vetterli. Fast Fourier transforms: A tutorial review and a state of the art. Signal Processing, 19(4):259--299, 1990.
[9]
A. Fog. Instruction tables. Lists of instruction latencies, throughputs and micro-operation breakdowns for Intel, AMD and VIA CPUs. Number 4 in Optimization manuals. http://www.agner.org, Technical University of Denmark, 1996--2016.
[10]
M. Frigo and S. G. Johnson. The design and implementation of FFTW3. Proc. IEEE, 93(2):216--231, 2005.
[11]
M. Fürer. Faster integer multiplication. In Proceedings of the Thirty-Ninth ACM Symposium on Theory of Computing, STOC 2007, pages 57--66, New York, NY, USA, 2007. ACM Press.
[12]
M. Fürer. Faster integer multiplication. SIAM J. Comp., 39(3):979--1005, 2009.
[13]
S. Gao and T. Mateer. Additive fast Fourier transforms over finite fields. IEEE Trans. Inform. Theory, 56(12):6265--6272, 2010.
[14]
J. von zur Gathen and J. Gerhard. Modern computer algebra. Cambridge University Press, second edition, 2003.
[15]
GCC, the GNU Compiler Collection. Software available at http://gcc.gnu.org, from 1987.
[16]
W. M. Gentleman and G. Sande. Fast Fourier transforms: For fun and profit. In Proceedings of the November 7-10, 1966, Fall Joint Computer Conference, AFIPS '66 (Fall), pages 563--578. ACM Press, 1966.
[17]
I. J. Good. The interaction algorithm and practical Fourier analysis. J. R. Stat. Soc. Ser. B, 20(2):361--372, 1958.
[18]
T. Granlund et al. GMP, the GNU multiple precision arithmetic library. http://gmplib.org, from 1991.
[19]
W. Hart et al. FLINT: Fast Library for Number Theory. http://www.flintlib.org, from 2008.
[20]
D. Harvey, J. van der Hoeven, and G. Lecerf. Faster polynomial multiplication over finite fields. http://arxiv.org/abs/1407.3361, 2014.
[21]
D. Harvey, J. van der Hoeven, and G. Lecerf. Even faster integer multiplication. J. Complexity, 2016. http://dx.doi.org/10.1016/j.jco.2016.03.001.
[22]
J. van der Hoeven. The truncated Fourier transform and applications. In J. Schicho, editor, Proceedings of the 2004 International Symposium on Symbolic and Algebraic Computation, ISSAC '04, pages 290--296. ACM Press, 2004.
[23]
J. van der Hoeven. Newton's method and FFT trading. J. Symbolic Comput., 45(8):857--878, 2010.
[24]
J. van der Hoeven and G. Lecerf. Interfacing Mathemagix with C++. In M. Monagan, G. Cooperman, and M. Giesbrecht, editors, Proceedings of the 2013 ACM on International Symposium on Symbolic and Algebraic Computation, ISSAC '13, pages 363--370. ACM Press, 2013.
[25]
J. van der Hoeven, G. Lecerf, and G. Quintin. Modular SIMD arithmetic in Mathemagix. http://hal.archives-ouvertes.fr/hal-01022383, 2014.
[26]
Intel Corporation, 2200 Mission College Blvd., Santa Clara, CA 95052-8119, USA. Intel (R) Architecture Instruction Set Extensions Programming Reference, 2015. Ref. 319433-023, http://software.intel.com.
[27]
Sian-Jheng Lin, Wei-Ho Chung, and S. Yunghsiang Han. Novel polynomial basis and its application to Reed-Solomon erasure codes. In 2014 IEEE 55th Annual Symposium on Foundations of Computer Science (FOCS), pages 316--325. IEEE, 2014.
[28]
C. Lüders. Implementation of the DKSS algorithm for multiplication of large numbers. In Proceedings of the 2015 ACM on International Symposium on Symbolic and Algebraic Computation, ISSAC '15, pages 267--274. ACM Press, 2015.
[29]
L. Meng and J. Johnson. High performance implementation of the TFT. In K. Nabeshima, editor, Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation, ISSAC '14, pages 328--334. ACM, 2014.
[30]
J. M. Pollard. The fast Fourier transform in a finite field. Math. Comp., 25(114):365--374, 1971.
[31]
C. M. Rader. Discrete Fourier transforms when the number of data samples is prime. Proc. IEEE, 56(6):1107--1108, 1968.
[32]
A. Schönhage. Schnelle Multiplikation von Polynomen über Körpern der Charakteristik 2. Acta Infor., 7(4):395--398, 1977.
[33]
A. Schönhage and V. Strassen. Schnelle Multiplikation groÿer Zahlen. Computing, 7:281--292, 1971.
[34]
V. Shoup. NTL: A Library for doing Number Theory, 2015. Software, version 9.6.2. http://www.shoup.net.
[35]
L. H. Thomas. Using a computer to solve problems in physics. In W. F. Freiberger and W. Prager, editors, Applications of digital computers, pages 42--57. Boston, Ginn, 1963.
[36]
S. Winograd. On computing the discrete Fourier transform. Math. Comp., 32:175--199, 1978.

Cited By

View all
  • (2022)Polynomial Multiplication over Finite Fields in Time Journal of the ACM10.1145/350558469:2(1-40)Online publication date: 10-Mar-2022
  • (2019)Faster integer multiplication using short lattice vectorsThe Open Book Series10.2140/obs.2019.2.2932:1(293-310)Online publication date: 28-Jan-2019
  • (2019)Big Prime Field FFT on Multi-core ProcessorsProceedings of the 2019 International Symposium on Symbolic and Algebraic Computation10.1145/3326229.3326273(106-113)Online publication date: 8-Jul-2019
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
ISSAC '16: Proceedings of the 2016 ACM International Symposium on Symbolic and Algebraic Computation
July 2016
434 pages
ISBN:9781450343800
DOI:10.1145/2930889
Publication rights licensed to ACM. ACM acknowledges that this contribution was authored or co-authored by an employee, contractor or affiliate of a national government. As such, the Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes only.

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 20 July 2016

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. finite fields
  2. mathemagix
  3. polynomial multiplication

Qualifiers

  • Research-article

Conference

ISSAC '16
Sponsor:

Acceptance Rates

Overall Acceptance Rate 395 of 838 submissions, 47%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)14
  • Downloads (Last 6 weeks)0
Reflects downloads up to 02 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2022)Polynomial Multiplication over Finite Fields in Time Journal of the ACM10.1145/350558469:2(1-40)Online publication date: 10-Mar-2022
  • (2019)Faster integer multiplication using short lattice vectorsThe Open Book Series10.2140/obs.2019.2.2932:1(293-310)Online publication date: 28-Jan-2019
  • (2019)Big Prime Field FFT on Multi-core ProcessorsProceedings of the 2019 International Symposium on Symbolic and Algebraic Computation10.1145/3326229.3326273(106-113)Online publication date: 8-Jul-2019
  • (2018)Frobenius Additive Fast Fourier TransformProceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation10.1145/3208976.3208998(263-270)Online publication date: 11-Jul-2018
  • (2017)The Truncated Fourier Transform for Mixed RadicesProceedings of the 2017 ACM International Symposium on Symbolic and Algebraic Computation10.1145/3087604.3087636(261-268)Online publication date: 23-Jul-2017
  • (2017)The Frobenius FFTProceedings of the 2017 ACM International Symposium on Symbolic and Algebraic Computation10.1145/3087604.3087633(437-444)Online publication date: 23-Jul-2017
  • (2017)Faster Polynomial Multiplication over Finite FieldsJournal of the ACM10.1145/300534463:6(1-23)Online publication date: 20-Jan-2017
  • (2017)Implementing Fast Carryless MultiplicationMathematical Aspects of Computer and Information Sciences10.1007/978-3-319-72453-9_9(121-136)Online publication date: 21-Dec-2017

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media