Studying the Effect of Data Structures on the Efficiency of Collaborative Filtering Systems
Abstract
References
- Studying the Effect of Data Structures on the Efficiency of Collaborative Filtering Systems
Recommendations
Trust-based collaborative filtering: tackling the cold start problem using regular equivalence
RecSys '18: Proceedings of the 12th ACM Conference on Recommender SystemsUser-based Collaborative Filtering (CF) is one of the most popular approaches to create recommender systems. This approach is based on finding the most relevant k users from whose rating history we can extract items to recommend. CF, however, suffers ...
An algorithm for efficient privacy-preserving item-based collaborative filtering
Collaborative filtering (CF) methods are widely adopted by existing recommender systems, which can analyze and predict user "ratings" or "preferences" of newly generated items based on user historical behaviors. However, privacy issue arises in this ...
Merging trust in collaborative filtering to alleviate data sparsity and cold start
Providing high quality recommendations is important for e-commerce systems to assist users in making effective selection decisions from a plethora of choices. Collaborative filtering is a widely accepted technique to generate recommendations based on ...
Comments
Information & Contributors
Information
Published In
In-Cooperation
- University of Granada: University of Granada
Publisher
Association for Computing Machinery
New York, NY, United States
Publication History
Check for updates
Author Tags
Qualifiers
- Short-paper
- Research
- Refereed limited
Conference
Acceptance Rates
Contributors
Other Metrics
Bibliometrics & Citations
Bibliometrics
Article Metrics
- 0Total Citations
- 211Total Downloads
- Downloads (Last 12 months)9
- Downloads (Last 6 weeks)0
Other Metrics
Citations
View Options
Login options
Check if you have access through your login credentials or your institution to get full access on this article.
Sign in