skip to main content
10.1145/2949550.2949572acmotherconferencesArticle/Chapter ViewAbstractPublication PagesxsedeConference Proceedingsconference-collections
research-article

Computational Considerations in Transcriptome Assemblies and Their Evaluation, using High Quality Human RNA-Seq data

Authors Info & Claims
Published:17 July 2016Publication History

ABSTRACT

It is crucial to understand the performance of transcriptome assemblies to improve current practices. Investigating the factors that affect a transcriptome assembly is very important and is the primary goal of our project. To that end, we designed a multi-step pipeline consisting of variety of pre-processing and quality control steps. XSEDE allocations enabled us to achieve the computational demands of the project. The high memory Blacklight and Greenfield systems at Pittsburgh Supercomputing Center were essential to accomplish multiple steps of this project. This paper presents the computational aspects of our comprehensive transcriptome assembly and validation study.

References

  1. A. Celaj, J. Markle, J. Danska, and J. Parkinson. Comparison of assembly algorithms for improving rate of metatranscriptomic functional annotation. Microbiome, 2(39), 2014.Google ScholarGoogle Scholar
  2. SEQC/MAQC-Iii. Consortium et al. A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the sequencing quality control consortium. Nature biotechnology, 32(9):903--914, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  3. M. Dodt, J. T. Roehr, R. Ahmed, and C. Dieterich. FLEXBAR - flexible barcode and adapter processing for next-generation sequencing platforms. Biology, 1(3):895--905, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  4. N. Ghaffari, O. A. Arshad, H. Jeong, J. Thiltges, M. F. Criscitiello, B.-J. Yoon, A. Datta, and C. D. Johnson. Examining de novo transcriptome assemblies via a quality assessment pipeline. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 1(1), 2015.Google ScholarGoogle Scholar
  5. M. G. Grabherr, B. J. Haas, M. Yassour, J. Z. Levin, D. A. Thompson, I. Amit, X. Adiconis, L. Fan, R. Raychowdhury, Q. Zeng, et al. Trinity: reconstructing a full-length transcriptome without a genome from RNA-seq data. Nature biotechnology, 29(7):644, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  6. D. Kim, G. Pertea, C. Trapnell, H. Pimentel, R. Kelley, S. L. Salzberg, et al. Tophat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol, 14(4):R36, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  7. B. Langmead, C. Trapnell, M. Pop, S. L. Salzberg, et al. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome biol, 10(3):R25, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  8. H.-S. Le, M. H. Schulz, B. M. McCauley, V. F. Hinman, and Z. Bar-Joseph. Probabilistic error correction for RNA sequencing. Nucleic acids research, page gkt215, 2013.Google ScholarGoogle Scholar
  9. B. Li, N. Fillmore, Y. Bai, M. Collins, J. A. Thomson, R. Stewart, and C. N. Dewey. Evaluation of de novo transcriptome assemblies from rna-seq data. Genome Biol, 15(12):553, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  10. H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, R. Durbin, et al. The sequence alignment/map format and SAMtools. Bioinformatics, 25(16):2078--2079, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. M. Martin. Cutadapt removes adapter sequences from high-throughput sequencing reads. EM Bnet. journal, 17(1):pp--10, 2011.Google ScholarGoogle Scholar
  12. A. McKenna, M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, A. Kernytsky, K. Garimella, D. Altshuler, S. Gabriel, M. Daly, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome research, 20(9):1297--1303, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  13. F. A. Simão, R. M. Waterhouse, P. Ioannidis, E. V. Kriventseva, and E. M. Zdobnov. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics, 31(19):3210--3212, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  14. J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw, V. Hazlewood, S. Lathrop, D. Lifka, G. D. Peterson, et al. XSEDE: accelerating scientific discovery. Computing in Science & Engineering, 16(5):62--74, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  15. T. D. Wu and C. K. Watanabe. Gmap: a genomic mapping and alignment program for mrna and est sequences. Bioinformatics, 21(9):1859--1875, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Other conferences
    XSEDE16: Proceedings of the XSEDE16 Conference on Diversity, Big Data, and Science at Scale
    July 2016
    405 pages
    ISBN:9781450347556
    DOI:10.1145/2949550

    Copyright © 2016 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 17 July 2016

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article
    • Research
    • Refereed limited

    Acceptance Rates

    Overall Acceptance Rate129of190submissions,68%
  • Article Metrics

    • Downloads (Last 12 months)1
    • Downloads (Last 6 weeks)0

    Other Metrics

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader