skip to main content
research-article

Detection of Subconscious Face Recognition Using Consumer-Grade Brain-Computer Interfaces

Authors Info & Claims
Published:25 August 2016Publication History
Skip Abstract Section

Abstract

We test the possibility of tapping the subconscious mind for face recognition using consumer-grade BCIs. To this end, we performed an experiment whereby subjects were presented with photographs of famous persons with the expectation that about 20% of them would be (consciously) recognized; and since the photos are of famous persons, we expected that subjects would have seen before some of the 80% they didn’t (consciously) recognize. Further, we expected that their subconscious would have recognized some of those in the 80% pool that they had seen before. An exit questionnaire and a set of criteria allowed us to label recognitions as conscious, false, no recognitions, or subconscious recognitions. We analyzed a number of event related potentials training and testing a support vector machine. We found that our method is capable of differentiating between no recognitions and subconscious recognitions with promising accuracy levels, suggesting that tapping the subconscious mind for face recognition is feasible.

References

  1. D. Akhawe and A. Porter Felt. 2013. Alice in Warningland: A large-scale field study of browser security warning effectiveness. In 22nd USENIX Security Symposium. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. S. Bentin and L. Deouell. 2000. Structural encoding and identification in face processing: ERP evidence for separate mechanisms. Cognitive Neuropsychology 17, 1, 35--55.Google ScholarGoogle ScholarCross RefCross Ref
  3. S. Boehm and W. Sommer. 2005. Neural correlates of intentional and incidental recognition of famous faces. Cognitive Brain Research 23, 2--3, 153--163.Google ScholarGoogle ScholarCross RefCross Ref
  4. H. Bojinov, D. Sanchez, P. Reber, D. Boneh, and P. Lincoln. 2012. Neuroscience meets cryptography: Designing crypto primitives secure against rubber hose attacks. In 21st USENIX Security Symposium. Bellevue, WA, 129--141. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. T. Bonaci, J. Herron, C. Matlack, and H. J. Chizeck. 2014. Securing the exocortex: A twenty-first century cybernetics challenge. In IEEE Conference on Norbert Wiener in the 21st Century (21CW’14). Boston, MA, 1--8.Google ScholarGoogle Scholar
  6. L. Bougrain, C. Saavedra, and R. Ranta. 2012. Finally, what is the best filter for P300 detection? In TOBI Workshop lll- Tools for Brain-Computer Interaction. Würzburg, Germany.Google ScholarGoogle Scholar
  7. C. Brunner, N. Birbaumer, B. Blankertz, C. Guger, A. Kübler, D. Mattia, J. Millán, F. Miralles, A. Nijholt, E. Opisso, N. Ramsey, P. Salomon, and G. R. Müller-Putz. 2015. BNCI horizon 2020: Towards a roadmap for the BCI community. Brain-Computer Interfaces 1--10. http://dx.doi.org/10.1080/2326263X.2015.1008956Google ScholarGoogle Scholar
  8. S. Caharel, S. Poiroux, C. Bernard, F. Thibaut, R. Lalonde, and M. Rebai. 2002. ERPs associated with familiarity and degree of familiarity during face recognition. International Journal of Neuroscience 112, 12, 1499--1512.Google ScholarGoogle ScholarCross RefCross Ref
  9. J. Chuang, H. Nguyen, C. Wang, and B. Johnson. 2013. I think, therefore I am: Usability and security of authentication using brainwaves. In Workshop on Usable Security (USEC’13).Google ScholarGoogle Scholar
  10. J. Clausen. 2014. Ethical implications of brain-computer interfacing. In Handbook of Neuroethics, J. Clausen and N. Levy (Eds.). Springer, The Netherlands, 699--704.Google ScholarGoogle Scholar
  11. A. M. Cleary. 2002. Recognition with and without identification: Dissociative effects of meaningful encoding. Memory & Cognition 30, 5 (2002), 758--767.Google ScholarGoogle ScholarCross RefCross Ref
  12. A. M. Cleary and R. L. Greene. 2000. Recognition without identification. Experimental Psychology: Learning, Memory & Cognition 26, 1063--1069.Google ScholarGoogle ScholarCross RefCross Ref
  13. A. M. Cleary, K. E. Konkel, J. S. Nomi, and D. P. McCabe. 2010. Odor recognition without identification. Memory & Cognition 38, 4, 452--460.Google ScholarGoogle ScholarCross RefCross Ref
  14. T. Currana and A. M. Cleary. 2003. Using ERPs to dissociate recollection from familiarity in picture recognition. Cognitive Brain Research 15, 191--205.Google ScholarGoogle ScholarCross RefCross Ref
  15. J. Debruille, F. Guillem, and B. Renault. 1995. ERPs and chronometry of face recognition: Following-up Seeck et al. and George et al. Neuroreport 9, 15, 3349--3353.Google ScholarGoogle ScholarCross RefCross Ref
  16. R. Dhamija and A. Perrig. 2000. Déjà Vu: A user study using images for authentication. In 9th USENIX Security Symposium. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. M. Eimer. 2000. Event-related brain potentials distinguish processing stages involved in face perception and recognition. Clinical Neurophysiology 111, 4, 694--705.Google ScholarGoogle ScholarCross RefCross Ref
  18. Emotiv. 2016. EPOC. Retrieved August 2, 2016 from https://emotiv.com/epoc.php.Google ScholarGoogle Scholar
  19. T. Fawcett. 2006. An introduction to ROC analysis. Pattern Recognition Letters 27, 8, 861--874. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. R. A. Fisher. 1936. The use of multiple measurements in taxonomic problems. Annals of Eugenics 7, 2, 179--188.Google ScholarGoogle ScholarCross RefCross Ref
  21. M. Frank, T. Hwu, S. Jain, R. Knight, I. Martinovic, P. Mittal, D. Perito, and D. Song. 2013. Subliminal probing for private information via EEG-based BCI devices. CoRR abs/1312.6052 (2013).Google ScholarGoogle Scholar
  22. N. George, B. Jemel, N. Fiori, and B. Renault. 1997. Face and shape repetition effects in humans: A spatio-temporal ERP study. Neuroreport 8, 6, 1417--1423.Google ScholarGoogle ScholarCross RefCross Ref
  23. A. G. Greenwald, T. A. Poehlman, E. L. Uhlmann, and M. R. Banaji. 2009. Understanding and using the implicit association test: III. Meta-analysis of predictive validity. Personality and Social Psychology 97, 1, 17--41.Google ScholarGoogle ScholarCross RefCross Ref
  24. InteraXon. 2016. Muse: The Brain Sensing Headband. Retrieved August 2, 2016 from http://www.choosemuse.com/.Google ScholarGoogle Scholar
  25. H. H. Jasper. 1958. The ten twenty electrode system of the international federation. Electroencephalography and Clinical Neurophysiology 10, 371--375.Google ScholarGoogle Scholar
  26. B. Johnson, T. Maillart, and J. Chuang. 2014. My thoughts are not your thoughts. In 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication. ACM, Seattle, WA, 1329--1338. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. M. Kaper, P. Meinicke, U. Grossekathoefer, T. Lingner, and H. Ritter. 2004. BCI competition 2003-data set IIb: Support vector machines for the P300 speller paradigm. IEEE Transactions on Biomedical Engineering 51, 1073--1076.Google ScholarGoogle ScholarCross RefCross Ref
  28. B. Kostic and A. M. Cleary. 2009. Song recognition without identification: When people cannot “name that tune” but can recognize it as familiar. Experimental Psychology: General 138, 1, 146--159.Google ScholarGoogle ScholarCross RefCross Ref
  29. D. J. Krusienski, E. W. Sellers, F. Cabestaing, S. Bayoudh, and D. J. Mcfarland. 2006. A comparison of classification techniques for the P300 speller. Journal of Neural Engineering 3, 4, 299--305.Google ScholarGoogle ScholarCross RefCross Ref
  30. J. C. Lee and D. S. Tan. 2006. Using a low-cost electroencephalograph for task classification in HCI research. In Proceedings of the 19th Annual ACM Symposium on User Interface Software and Technology (UIST’06). 81--90. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. S. Marcel and J. Millán. 2007. Person authentication using brainwaves (EEG) and maximum a posteriori model adaptation. IEEE Transactions on Pattern Analysis and Machine Intelligence 29, 4, 743--752. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. I. Martinovic, D. Davies, M. Frank, D. Perito, T. Ros, and D. Song. 2012. On the feasibility of side-channel attacks with brain-computer interfaces. In 21st USENIX Security Symposium. Bellevue, WA, 143--158. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. E. Mnatsakanian and I. Tarkka. 2003. Matching of familiar faces and abstract patterns: Behavioral and high-resolution ERP study. International Journal of Psychophysiology 47, 3, 217--227.Google ScholarGoogle ScholarCross RefCross Ref
  34. M. Mustafa, L. Lindemann, and M. Magnor. 2012. EEG analysis of implicit human visual perception. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI’12). 513--516. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. A. Neupane, N. Saxena, K. Kuruvilla, M. Georgescu, and R. Kana. 2014. Neural signatures of user-centered security: An fMRI study of phishing, and malware warnings. In Network and Distributed Systems Security Symposium (NDSS’14).Google ScholarGoogle Scholar
  36. NeuroSky. 2016a. EEG Hardware Platforms. Retrieved August 2, 2016 from http://neurosky.com/biosensors/eeg-sensor/biosensors/.Google ScholarGoogle Scholar
  37. NeuroSky. 2016b. MindFlex Duel. Retrieved August 2, 2016 from http://store.neurosky.com/products/mindflex-duel.Google ScholarGoogle Scholar
  38. M. E. J. Newman. 2005. Power laws, Pareto distributions and Zipf’s law. Contemporary Physics 46, 323--351.Google ScholarGoogle ScholarCross RefCross Ref
  39. Passfaces Co. 2016. Passfaces: Two Factor Authentication for the Enterprise.. Retrieved August 2, 2016 from http://www.passfaces.com/index.htm.Google ScholarGoogle Scholar
  40. E. M. M. Peck, B. F. Yuksel, A. Ottley, R. J. K. Jacob, and R. Chang. 2013. Using fNIRS brain sensing to evaluate information visualization interfaces. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI’13). 473--482. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. E.-M. Pfütze, W. Sommer, and S. R. Schweinberger. 2002. Age-related slowing in face and name recognition: Evidence from event-related brain potentials. Psychology and Aging 17, 140--160.Google ScholarGoogle ScholarCross RefCross Ref
  42. T. Rosburg, P. Trautner, T. Dietl, T. Kral, C. E. Elger, and M. Kurthen. 2005. The influence of repetition and famousness on the intracranially recorded temporobasal N200. Behavioural Neuroscience 119, 4, 876--883.Google ScholarGoogle ScholarCross RefCross Ref
  43. J. L. Sanguinetti, John J. B. Allen, and M. A. Peterson. 2014. The ground side of an object: Perceived as shapeless yet processed for semantics. Psychological Science 25, 1, 256--264.Google ScholarGoogle ScholarCross RefCross Ref
  44. Schalk Lab. 2016. BCI2000 Wiki.. Retrieved August 2, 2016 from http://www.bci2000.org/wiki/index.php.Google ScholarGoogle Scholar
  45. M. Seeck, C. M. Michel, N. Mainwaring, R. Cosgrove, H. Blume, J. Ives, T. Landis, and D. L. Schomer. 1997. Evidence for rapid face recognition from human scalp and intracranial electrodes. Cognitive Neuroscience and Neuropsychology 8, 12, 2749--2754.Google ScholarGoogle Scholar
  46. S. Shalgi and L. Y. Deouell. 2012. Is any awareness necessary for an Ne? Frontiers in Human Neuroscience 6, 124.Google ScholarGoogle ScholarCross RefCross Ref
  47. H. P. D. Silva, S. Fairclough, A. Holzinger, R. Jacob, and D. Tan. 2015. Introduction to the special issue on physiological computing for human-computer interaction. ACM Transactions on Computer-Human Interaction 21, 6, 29:1--29:4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. E. T. Solovey, F. Lalooses, K. Chauncey, D. Weaver, M. Parasi, M. Schuetz, A. Sassaroli, S. Fantini, P. Schermerhorn, A. Girouard, and R. J. K. Jacob. 2011. Sensing cognitive multitasking for a brain-based adaptive user interface. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI’11). 383--392. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. L. Standing. 1973. Learning 10000 pictures. Quarterly Journal of Experimental Psychology 25, 2, 207--222.Google ScholarGoogle ScholarCross RefCross Ref
  50. S. Sternberg. 1966. High-speed scanning in human memory. Science 153, 3736, 652--654.Google ScholarGoogle Scholar
  51. J. R. Stroop. 1935. Studies of interference in serial verbal reactions. Journal of Experimental Psychology 18, 6, 643--662.Google ScholarGoogle ScholarCross RefCross Ref
  52. S. Sutton, M. Braren, J. Zubin, and E. R. John. 1965. Evoked-potential correlates of stimulus uncertainty. Science 150, 1187--1188.Google ScholarGoogle ScholarCross RefCross Ref
  53. D. Szafir and B. Mutlu. 2012. Pay attention! Designing adaptive agents that monitor and improve user engagement. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI’12). 11--20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. D. J. Watts. 1999. Small Worlds: The Dynamics of Networks Between Order and Randomness. Princeton University Press, Princeton, NJ. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. B. F. Yuksel, M. Donnerer, J. Tompkin, and A. Steed. 2010. A novel brain-computer interface using a multi-touch surface. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI’10). 855--858. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Detection of Subconscious Face Recognition Using Consumer-Grade Brain-Computer Interfaces

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Applied Perception
      ACM Transactions on Applied Perception  Volume 14, Issue 1
      January 2017
      128 pages
      ISSN:1544-3558
      EISSN:1544-3965
      DOI:10.1145/2974018
      Issue’s Table of Contents

      Copyright © 2016 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 25 August 2016
      • Accepted: 1 June 2016
      • Revised: 1 May 2016
      • Received: 1 February 2016
      Published in tap Volume 14, Issue 1

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader