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A

Specification Mining for Machine Improvisation with Formal
Specifications

Rafael Valle, UC Berkeley, CNMAT
Alexandre Donzé, UC Berkeley
Daniel J. Fremont, UC Berkeley
Ilge Akkaya, UC Berkeley
Sanjit A. Seshia, UC Berkeley
Adrian Freed, UC Berkeley, CNMAT
David Wessel, UC Berkeley

We address the problem of mining musical specifications from a training set of songs and using these specifications in a
machine improvisation system capable of generating improvisations imitating a given style of music. Our inspiration comes
from Control Improvisation, which combines learning and synthesis from formal specifications. We mine specifications
from symbolic musical data with musical and general usage patterns. We use the mined specifications to ensure that an
improvised musical sequence satisfies desirable properties given a harmonic context and phrase structure. We present a
specification mining strategy based on pattern graphs and apply it to the problem of supervising the improvisation of blues
songs. We present an analysis of the mined specifications and compare the results of improvisations generated with and
without specifications.

Additional Key Words and Phrases: Specification Mining, Formal Methods, Control Improvisation, Machine Learning

1. INTRODUCTION
The field of machine improvisation, i.e. computer music improvisation, has been investigated under
mainly two approaches: rule-based and data-driven. Rule-based approaches attempt to define rules
characterizing “good” improvisations and generate pieces of music that follow these rules. How-
ever, it has been observed that it is difficult to come up with the “right” rules, resulting in systems
that are either too restrictive, limiting creativity, or too relaxed, thereby allowing undesirable behav-
ior [Cope 1991; Dubnov and Assayag 2002; Keller and Morrison 2007]. Data-driven approaches
tend to employ machine learning techniques to learn generative models from music samples and
use these models to generate new melodies. Examples of such models include stochastic context-
free grammars (SCFGs) [Gillick et al. 2009; Keller 2012], hidden Markov models (HMMs) [Gillick
2009; Paiement et al. 2009], and universal predictors [Dubnov et al. 2003; Dubnov and Assayag
2002; Assayag and Dubnov 2004; Cabral et al. 2006]. Some systems combine rule-based and data-
driven approaches; e.g. the Impro-visor system [Keller and Morrison 2007] based on SCFGs uses
rules learned by grammatical inference from training licks [Gillick et al. 2009]. Related to our work,
[Pachet et al. 2001] describe non-homogeneous Markov processes with control constraints, e.g. last
pitch must be a specific note. While Pachet’s work focuses on unary constraints manually created
by the user and binary constraints that are within the scope of the Markov order, this paper focuses
on learning constraints from data as formal specifications. Our recent efforts in this direction are
presented in [Donzé et al. 2014], in which we define the problem of machine improvisation with
formal specifications. In computer science, a formal specification is a mathematical statement of
expected behavior of a system, typically given in mathematical logic or as an automaton. In [Donzé
et al. 2014], we considered the scenario of improvising a monophonic jazz melody given a train-
ing sequence (melody) and a chord progression. Overall, our approach described in [Donzé et al.
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2014] consists of two stages: a generalization stage, where a reference sequence (e.g. obtained from
a human improviser) is used to learn an automaton generating similar sequences, and a supervision
stage, that enforces specifications on pitch and rhythm.

In [Donzé et al. 2014], the specification, formally represented as a finite state automaton (FSA),
encodes rhythmic and harmonic constraints adapted and simplified from generic jazz improvisation
guidelines found in Keller’s How to Improvise Jazz Melodies [Keller 2012]. Although these hand-
crafted guidelines can be manually converted into formal specifications, this task is time-consuming
even in simple cases. Generally, writing specifications requires knowledge of logic not possessed by
most composers and, conversely, musical knowledge not possessed by most logicians. Specification
mining offers a solution that is either entirely automatic or only requires the much simpler task of
creating templates for the musical patterns of interest. Our engine statistically learns, in the form
of a pattern graph, the musical characteristics of a song dataset by mining predefined musical and
general usage patterns from it. In this paper, we evaluate our approach using a dataset of traditional
blues songs and the predefined patterns focus on properties related to rhythm, pitch, melodic contour
and chord/non-chord tones.

The paper is organized as follows. Section 2 gives an overview of our approach, using a simpli-
fied presentation and a small example, followed by related work in Section 3. Section 4 describes
the control improvisation and specification mining formalisms our techniques are based on, while
the algorithms themselves are described in Section 5. Next, Section 6 details the specific musical
features used in our experiments, whose results are presented in Section 7. Finally, we conclude in
Section 8 with a summary and directions for future work.

2. OVERVIEW
In this section, we give an informal overview of the machine improvisation approach that we de-
veloped, sketching the different components using a simplified formalization and a small example.
As sketched in Figure 1, the overall flow begins with a training set of songs D = {s1, . . . , sN}
and a reference song s, and produces as output a set of specifications used in a controller, and an
improviser, which is the actual object generating new improvisations, i.e., new sequences of notes.
The improviser and the procedure to enforce the specifications are implemented closely following
[Donzé et al. 2014]: the main contribution of the present paper is how to generate the specifications.

Training
dataset D

Reference
song s

Specification
Mining Controller

Improviser
(Factor Oracle) Possible Notes

Desirable Note
⊕

Improvised
song simpro

Fig. 1: Workflow of our approach.

All songs are assumed to be in lead sheet format, i.e. with a single instrument melody line and an
accompaniment specified as a simple chord sequence. In the following, assume s is given by:

s = G 7
G7

ˇ ˇ ˇ ˇ
Cˇ ˇ ˇ ˇ 7
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Using standard chord and pitch notations, such as C, Am, D7 and a, a#, b, c, c#, d, etc., we can
write s as a sequence of pitch and chord pairs:

(g,G7)(b,G7)(d,G7)(b,G7)(c,C)(b,C)(c,C)(c,C)

We say that s can be encoded using two alphabets, one for chords and another for pitches. Here,
for the sake of simplicity, we ignore duration information and other nuances that can be encoded
using other alphabets.

Specifications. The songs s1, . . . , sN in our training set can be represented in the same way and
we assume that they all satisfy some a priori unknown set of specifications, which are properties of
the combined sequence of pitches and chords. Simple examples of such specifications include:

— ϕ1: the current pitch belongs to the current chord, e.g.,
— (c,C),(g,C),(f,G7),(b,G7) satisfies ϕ1

— (c#,C),(a,C),(c,G7),(e,G7) does not satisfy ϕ1

— ϕ2: the current pitch does not belong to the chord, but the one before did and the one after will,
and they are at an interval not greater than one tone, e.g., (c,C),(b,C) is a sequence satisfying ϕ2

iff the next note is (c,C).

— ϕ3: about 70% of the time, a (g,C) is followed by a (c,C).

In [Donzé et al. 2014], such specifications were described and implemented manually, whereas
in this work, we describe how to explicitly and implicitly1 extract these specifications from the
training set D. Note also that ϕ1 and ϕ2 are non-probabilistic (hard) specifications and ϕ3 is
probabilistic (soft). In [Donzé et al. 2014], we only considered non-probabilistic specifications.

The purpose of the improviser is to generate new songs of arbitrary length, e.g.,

(g,G7)(b,G7)(d,G7)(b,G7)(c,C)(d,C)(e,C)(c,C)(b,G7)(a,G7)(g,G7)(f,G7)(e,C), ...

that satisfy several criteria, which we state informally below:

(a) All generated sequences satisfy at least one of the non-probabilistic specifications at all times;
(b) The distribution of generated sequences is sufficiently diverse (i.e. there is a variety of different

improvisations);
(c) The melody diverges from the reference melody in some controllable way, i.e. it can be made

very similar or arbitrarily different;
(d) The distribution of generated sequences satisfies the probabilistic specifications.

In Section 4 we will see how criteria (a), (b), and (c) naturally fit into the framework of control
improvisation. This is not the case for criterion (d), since [Donzé et al. 2014] did not consider
probabilistic specifications.

Factor Oracle-based improvisation. To construct an improviser satisfying the above criteria, we
start by following the approach presented in [Assayag and Dubnov 2004]: we construct the factor
oracle [Cleophas et al. 2003] corresponding to the melody line of the reference song s. A factor
oracle is a finite state machine with n+ 1 states (where n is the number of notes) and edges labeled
with the pitches of the melody. The factor oracle corresponding to the above reference melody is
shown in Figure 2. It is constructed in such a way that if one follows the edges and reads labels, it
produces a sequence which is a concatenation of subsequences of the reference sequence. Moreover,

1In our system, the pattern ϕ1 is learned implicitly given chord degree specifications.
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0 1 2 3 4 5 6 7 8
g b d b c b c c

b
d

c

c c

Fig. 2: Factor oracle constructed from the example melody.

if one takes only “direct” transitions, i.e. those from a state i to i+ 1, and no other forward or back-
ward transitions, then the sequence of labels reproduces exactly the original sequence. It was then
observed in [Assayag and Dubnov 2004; Donzé et al. 2014] that by assigning a fixed probability p,
called the replication probability, to direct transitions, and uniform probabilities to other “branch-
ing” transitions, one obtains a stochastic generator which produces sequences similar in some sense
to the original sequence, where the degree of similarity is controlled by p. Such a generator satisfies
criteria (b) and (c) above for appropriate values of p.

Enforcing Specifications. The factor oracle improviser we just described generates notes without
taking into account the harmonic context, and more generally the type of (musical) specifications
that we are interested in. Extending our work in [Donzé et al. 2014], and as described in Section 5,
our approach works by enforcing the desired or mined specifications over sequences of notes pro-
posed by the factor oracle. For example, without specifications the factor oracle of Figure 2 might
generate the sequence gbdcb by going through states 0, 1, 2, 3, 0, 5, and 6 . Once combined
with the chord sequence, we get (g,G7)(b,G7)(d,G7)(c,G7)(b,C) which clearly violates both ϕ1

and ϕ2 above, since c does not belong to the G7 chord, and b does not belong to the C chord. In
this situation, our approach would have prevented this improvisation by blocking the transition in
the factor oracle from state 5 to 6, forcing the improviser to either take a c transition (valid because
this would cause the last three notes to satisfy ϕ2) or to go back silently to state 0 and take another
transition satisfying either ϕ1 or ϕ2.

3. RELATED WORK
The concept of control improvisation was first introduced in [Donzé et al. 2013b; Donzé et al. 2014].
It was presented as a variation of the standard supervisory control problem for discrete event sys-
tems [Cassandras and Lafortune 2006], with applications to the generation of music. A real time
implementation was presented in [Donzé et al. 2013a], and the problem was investigated theoret-
ically in [Fremont et al. 2015]. As indicated in the previous section, the core of the improvisation
process rests on the notion of a factor oracle. The factor oracle (FO) was initially introduced in
[Cleophas et al. 2003] as an algorithm for optimal string matching, and later suggested as a suit-
able data structure for machine improvisation in [Assayag and Dubnov 2004]. It is in use in several
prominent improvisation systems such as OMax2 and its variant ImproTek [Nika and Chemillier
2012].

In software engineering literature, specification mining is an efficient procedure to automatically
infer, from empirical data, general rules that describe the interactions of a program with an ap-
plication programming interface (API) or abstract datatype (ADT) [Ammons et al. 2002]. It has
convenient properties that facilitate and optimize the process of developing formal specifications.
First, specification mining is either entirely automatic, or only requires the relatively simple task of
creating templates. In addition, it can exploit latent properties that are unknown to the user and only
reflected in the data, offering valuable information on commonalities in large datasets.

2http://repmus.ircam.fr/omax/home
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Techniques to automatically generate specifications date back to the early seventies, including
[Caplain 1975; Wegbreit 1974]. More recent efforts that analyze the problem of specification infer-
ence include [Alur et al. 2005; Ammons et al. 2002; Engler et al. 2001; Li et al. 2010]. In general,
specification mining tools infer temporal properties in the form of mathematical logic or automata.
Broadly speaking, the two main strategies for building these automata include: learning a single
automaton and inferring specifications from it; learning small templates and designing a complex
automaton from them. For example, [Ammons et al. 2002] learns a single probabilistic finite state
automaton from the trace and then extracts likely properties from it. The other strategy circumvents
the NP-hard challenge of directly learning a single finite state automaton [Gold 1967; Gold 1978]
by first learning small specifications and then post-processing them to build more complex state ma-
chines. The idea of mining simple alternating patterns was introduced by [Engler et al. 2001], and
several subsequent efforts [Gabel and Su 2008a; Gabel and Su 2008b; Weimer and Necula 2005;
Yang et al. 2006] built upon this work.

In music, and specifically music improvisation, the task of learning or describing such general
rules is difficult, even for experts, due to music’s large parameter space and richness of interpreta-
tion. Therefore, specification mining is very attractive because it offers a systematic and automatic
mechanism for learning these specifications from large amounts of data.

4. CONTROL IMPROVISATION AND SPECIFICATION MINING
4.1. Control Improvisation
We now describe more formally the automata-theoretic concepts used in this paper, including the
control improvisation problem. For a fully formal definition and theoretical treatment of control
improvisation, see [Fremont et al. 2015].

4.1.1. Notation and Background. As will be discussed later in Section 6, in this paper we work
entirely with discrete, symbolic representations of musical data (pitches, durations, chords, etc.).
Objects such as melodies are represented as finite sequences, or words, whose elements are drawn
from a finite alphabet of symbols Σ. We write ε for the empty word consisting of no symbols,
and |w| for the length of a word w. Words can be combined by concatenation, which we denote as
multiplication: for example, ab is a word of length 2 if a and b are symbols in Σ.

A convenient formalism for expressing sets of words is regular expressions. The simplest regular
expressions are written a for some a ∈ Σ, and denote the set of words consisting of the single word
a. We also use Σ to denote the set of all of these singleton sets. These basic expressions can then be
combined using three operators: concatenation, union, and Kleene star. Given regular expressions
p and q, their concatenation pq simply consists of all words which are concatenations of a word in p
with a word in q. The union p

⋃
q is just the set-theoretic union, consisting of all words in either p

or q. Finally, the Kleene star p∗ is the set of all concatenations of finitely many words in p (including
the empty concatenation ε). For example, Σ∗ is precisely the set of all words over the alphabet Σ,
and (a

⋃
b)∗ is the set of all words using only the symbols a and b.

Another useful way to represent sets of words is with finite state automata:

Definition 4.1. A finite state automaton (FSA) is a tuple A = (Q, q0, F,Σ,→) where Q is a set
of states, q0 ∈ Q is the initial state, F ⊂ Q is the set of accepting states, Σ is a finite set called
the alphabet and→ ⊂ Q× (Σ

⋃
{ε})×Q is the transition relation. We use the notation q σ−→ q′ to

mean that (q, σ, q′) ∈ →.

A word σ1σ2 . . . σn is a trace of a FSA A iff there exists a sequence of states qi ∈ Q such that
q0

σ1−→ q1
σ2−→ . . .

σn−1−−−→ qn−1
σn−−→ qn. It is an accepting trace of A iff qn is in F . The language of

A, denoted L(A), is the set of accepting traces of A.

4.1.2. Problem Definition. As described above, control improvisation seeks to generate random
variations on a reference word wref, all of which must satisfy a given specification and whose sim-
ilarity to the reference can be controlled. Following [Donzé et al. 2014], the possible variations are

ACM Computers in Entertainment, Vol. V, No. N, Article A, Publication date: January YYYY.
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given as the language of a plant FSAAp, and the specification is given by another FSAAs. Dissim-
ilarity to the reference word is measured by a divergence measure dwref , a nonnegative function on
words such that dwref(wref) = 0. These together with parameters indicating how much randomness
and similarity to wref is desired specify a control improvisation problem:

Definition 4.2. (Control Improvisation Problem) A control improvisation problem P consists
of FSAs Ap and As with a common alphabet Σ, an accepting trace wref of both Ap and As, a
divergence measure dwref , an interval I = [d, d], and parameters ε, ρ ∈ (0, 1). A solution of P is a
probabilistic algorithm generating words w in Σ∗ such that the following conditions hold:

(a) Safety: each w is an accepting trace of both Ap and As;
(b) Randomness: the probability of generating each w is smaller than ρ;
(c) Bounded Divergence: Pr(dwref(w) ∈ [d, d]) > 1− ε.

To illustrate how this problem is useful, let us cast the example of Section 2 as an instance of
control improvisation. Recall that songs were represented as sequences of pitch and chord pairs:
thus our alphabet Σ consists of all possible such pairs. The plant automaton Ap encodes a model
for generating improvisations without enforcing any specifications, which in our case is a factor
oracle over the reference song (as described in Section 3). The automaton As depends on which
specifications we desire. For the specification ϕ1 from Section 2, for example, we might use the
automaton in Figure 3. To simplify the diagram we have consolidated some transitions: from q0

there are separate transitions for input symbols (c,C) and (g,C), for example, and generally for
all pairs where the pitch is contained in the chord, but since all these transitions lead back to q0 we
have drawn them as a single arrow.

q0 q1

(pitch, chord)
pitch 6∈ chord

(pitch, chord)
pitch ∈ chord

Fig. 3: Specification automaton for ϕ1.

Now we can see how requirements (a), (b), and (c) on a generated word in the control improvisa-
tion problem correspond exactly to the requirements stated in Section 2 for improvised songs:

(a) The improvisation being an accepting trace ofAp ensures it can be generated by the underlying
specification-free improvisation system (e.g. a factor oracle), while being an accepting trace of
As ensures that it satisfies our specifications3.

(b) By requiring that each improvisation w be generated with probability at most ρ, we ensure that
at least 1/ρ improvisations can be generated. So by making ρ small we can ensure a diverse
distribution of improvisations.

(c) By defining the interval I and parameter ε appropriately, this condition allows us to control how
much the improvisations can diverge from the reference song (according to the similarity metric
used).

This leaves only requirement (d) from Section 2, namely enforcement of probabilistic specifications.
This does not fit into the definition of control improvisation as stated above, and so will be discussed
in Section 5.2 below.

3In Section 2 we required that the improvisation satisfy at least one of several specifications at each event, but those can
easily be combined into a single specification that is required to hold over the entire improvisation.
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4.2. Specification
In this current work, we expand our previous efforts in [Donzé et al. 2014] by developing an in-
ference engine that mines specifications from a song dataset in the form of pattern graphs learned
using a set of pre-defined pattern templates. The following paragraphs adapt the work of [Li et al.
2010] to formally describe specification mining in music.

4.2.1. Events and Patterns. Let F be the set of feature vectors extracted from a song S, e.g. pitch,
duration, and so forth. For every feature f ∈ F , we use the notation vf,t to indicate the valuation of
f at time t.

Definition 4.3 (Event). An event is a tuple (~f,~v, t), where ~f is a set of musical features and ~v
is their corresponding valuations at time t. The alphabet Σf is the set of possible events for feature
f , and a finite trace τ is a sequence of events ordered by their time of occurrence. We address
monophonic music in this paper, so there is only one event at a time.

Definition 4.4 (Projection). The projection πΣ(τ) of a trace τ onto an alphabet Σ is defined as
τ with all events not in Σ deleted.

Definition 4.5 (Specification Pattern). A specification pattern is an FSA over symbols Σ. Pat-
terns can be parametrized by the events used in this alphabet; for example, we use “the A pattern
between events a and b” to indicate the pattern obtained by taking an FSAA with |Σ| = 2 and using
a as the first element of Σ and b as the second. A pattern occurs4 in a trace τ with alphabet Στ ⊇ Σ
if and only if there is a subword σ of τ such that πΣ(σ) ∈ L(A).

Definition 4.6 (Binary Pattern). A specification pattern with alphabet size 2. We denote a binary
pattern between events a and b as a R b, where R is a label identifying the pattern.

Now that we have described patterns as a general concept, we define three types of patterns that
we will use in this paper. Each pattern corresponds to common musical behaviors such as harmonic
resolutions and ornaments. For simplicity we define them using regular expressions, which are
equivalent to FSAs.

Followed (F): The followed pattern between two events a and b occurs when a is immediately
followed by b. It provides information about possible transitions between events, which can be
used, for example, to specify the resolution of non-chord tones. We denote the followed pattern as
a F b and can match it with the regular expression (ab).

‘Til (T): The ‘Til pattern between two events a and b occurs when a occurs two or more times
in sequence and is then immediately followed by b. Compared to the followed pattern, it provides
more specific information about what transitions are possible after self-transitions are taken. We
denote this pattern as a T b and can match it with the regular expression (aaa∗b).

Surrounding (S): The surrounding pattern between two events a and b occurs when event a
immediately precedes and succeeds event b. It provides information over a time-window of three
events and we musically describe it as an ornamented self-transition. We use a S b to denote this
pattern and can match it with the regular expression (aba).

4.2.2. Pattern Merging. If every match to a pattern P2 = a R b occurs inside a match to a pattern
P1 = a Q b, we say that P1 subsumes P2 and write P1 =⇒ P2. When this happens, we only add
the stronger pattern P1 to the pattern graph. The purpose of merging is to emphasize longer musical

4Note that this is different from the trace satisfying the pattern in the sense of [Li et al. 2010]: we are interested in occurrences
of patterns within a trace, whereas they require the entire trace to match the pattern.
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structures: if one pattern always occurs only as part of a longer one, then we will only allow the
longer pattern to occur in our generated phrases, but not the shorter pattern by itself.

An example is the chord degree5 specification mined from the song Crossroads Blues, shown in
Figure 4. Here, chord degree 10 (note f) is followed by chord degree 7 (note d), so without merging
we would learn the pattern 10 F 7. This would allow generating words such as (10, 7, 10, 7), which
is inconsistent with the melodic motives in the song, which always have multiple occurrences of 10
before transitioning to 7. Thus every match to 10 F 7 is contained in a match to 10 T 7, and so with
pattern merging we only learn 10 T 7, thereby forbidding (10, 7, 10, 7). In fact, 10 T 7 shows how a
pattern can subsume multiple patterns, since in this example it also subsumes 10 F 10 and 10 T 10
(both of which we would otherwise learn).

Fig. 4: First phrase of Crossroads Blues by Robert Johnson as transcribed in the Real Book of Blues.

4.2.3. Specifications from Patterns. For each feature f ∈ F , the specifications on f that we mine
are of several different types:

(1) Which values of f can occur at the beginning of a phrase.
(2) Which values of f can occur at the end of a phrase.
(3) Which patterns over Σf can occur in the phrase.
(4) The empirical probabilities of these patterns.

More formally, the type (3) specification requires that every pattern that matches the trace either
is allowed (i.e. occurred in the training data) or is subsumed by one that is allowed. For example,
suppose the specification was learned from the single word (a, b, a, b, a). Due to merging, we only
learn the pattern a S b, even though for example the word matches b F a. Now consider the word
(b, a). The only match to any pattern in this word is the entire word itself, which matches b F a.
This pattern was not learned, and is trivially not subsumed by a learned pattern since there are no
other matches to subsume it. Therefore (b, a) does not satisfy the specification. However, the word
(a, b, a) does satisfy the specification: it matches a S b, which was learned; it also matches a F b
and b F a, but both matches are subsumed by the match to a S b.

The first three types of specification are hard constraints that the phrases we generate must respect,
while the last can be viewed as a kind of soft constraint. We encapsulate all four types in a data
structure we call the pattern graph.

Definition 4.7 (Pattern Graph). A pattern graph is a labelled directed multigraph whose nodes
are elements of Σf , i.e. values of a feature f . A node can be labelled as a starting node, an ending
node, or neither. Edges are labelled with a type of binary pattern and a count indicating how many
times the pattern occurred in the dataset.

For example, an edge (a, b) labelled (R, 3) in the pattern graph means the pattern a R b occurred
3 times in the dataset. A complete example of a pattern graph is shown in Figure 5, where we have
indicated starting nodes with an unlabelled incoming arrow and ending nodes with a double circle
(by analogy to the standard notation for FSAs).

While a pattern graph represents the hard specifications above, it is not itself an automaton. How-
ever, our method still fits into the framework of control improvisation as presented in Section 4.1.2,

5In this paper, chord degree is represented by the distance, in semitones, from a note to the current chord’s root note.
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Fig. 5: Pattern graph learned on the chord degree feature (interval from root) extracted from the
phrase in Fig. 4.

because the pattern graph can be converted into a specification automaton As. In fact, as explained
in Section 5.2, our improvisation algorithm does not need to perform this conversion.

5. LEARNING AND ENFORCING SPECIFICATIONS
In this section we describe how we learn hard and soft specifications in the form of pattern graphs,
and how those graphs are used to guide the improvisation process.

5.1. Learning Specifications
In this subsection we describe the procedure used to learn pattern graphs from a dataset D with
features F . The procedure also takes as input a set P of patterns, consisting of a function for each
pattern type R that maps feature values a, b to a regular expression defining the pattern a R b. As
a preprocessing step, the songs in D are segmented into three phrases (A A’ B)6. An example of a
segmented dataset is shown in Table I.

After segmentation, for each feature f a pattern graph Gf is constructed by Algorithm 1, whose
main steps are as follows. First, for each phrase we add the first and last feature values as start-
ing/ending nodes respectively in the graph. Second, for every a, b ∈ Σf we find all matches to a R
b for every pattern type R. If there is a match to a R b which is not subsumed, then we add a cor-
responding edge to the pattern graph labelled with the number of times the pattern occurs. A naı̈ve
implementation of this algorithm could explicitly compute the locations of every match by instan-
tiating all possible regular expressions for the patterns in P and finding all ways each expression
matches the phrase. Then the subsumption check is simply a matter of comparing the locations of
the matches. If the number of feature values or pattern types is large, this could be highly inefficient,
but for the pattern types used in this paper all non-subsumed patterns can be found with a fast linear
search.

5.2. Improvising with Specifications
The core of our improvisation approach is the factor oracle (FO), briefly described in Section 2.
Following [Donzé et al. 2014], we enforce specifications on top of the factor oracle by solving a
control improvisation problem where the plant Ap encodes the factor oracle built from wref and
enforces its chord progression. As described in [Donzé et al. 2014], if the specification automaton
As is non-blocking in the sense that an accepting state is always reachable, i.e. there are no dead-
locks, we can solve the control improvisation problem by restricting the factor oracle to only take
transitions consistent with As. If there are no such transitions in the factor oracle, we use heuristics
to decide which destination state is most appropriate. This procedure can be extended to general
specifications using techniques from supervisory control (see [Donzé et al. 2014]).

As mentioned above, the pattern graphs learned by the algorithm in the previous section can be
converted into a specification automatonAs. However, this construction involves taking the product
of many automata — one for each pattern — resulting in a final automaton whose size grows
exponentially with the number of patterns. So in practice As is likely to be too large to construct
explicitly. Therefore, we use the following heuristic: we assume As is non-blocking, and if we

6Phrase boundaries are automatically extracted and manually corrected if necessary.
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ALGORITHM 1: Specification Mining Algorithm
Input: dataset D over features F ; patterns P
Output: a pattern graph Gf for each f ∈ F

1 for f ∈ F do
2 Gf ← new pattern graph on vertices Σf

3 for song ∈ D do
4 for phrase ∈ song do
5 phrasef ← the sequence of values of the feature f in phrase
6 label the first element of phrasef as a starting node in Gf
7 label the last element of phrasef as an ending node in Gf
8 for a, b ∈ Σf do
9 counts← countPatternMatches(a, b, phrasef ,P)

10 foreach pattern P with counts(P ) > 0 do
11 add to Gf the edge (a, b) with label (P, counts(P ))
12 end
13 end
14 end
15 end
16 end

reach a blocked state (i.e. one with no outgoing transitions), we reject our current improvisation
and start over. Then we can use the procedure for non-blocking automata cited above, which only
requires being able to compute for any state of As the set of outgoing transitions. As we will show
below, this information can be read off from the pattern graph without having to construct As. In
practice we find that reaching a blocked state is rare, so few restarts are required and this procedure
is efficient.

Determining the transitions allowed byAs from the current state is straightforward. At the begin-
ning of an improvisation, we only allow symbols which are labelled as starting nodes in the pattern
graph. Likewise, we only allow an improvisation to end on symbols labelled as ending nodes. Fi-
nally, if the last generated symbol was a, a transition on symbol b is allowed only in the following
situations:

(1) the pattern graph has an edge from a to b labelled with pattern F;
(2) the pattern graph has an edge from a to b labelled with pattern S; in this case we require the

next transition to be on symbol a;
(3) the pattern graph has an edge from a to b labelled with pattern T, and the symbol before a was

also an a (as the a T b pattern requires two or more copies of a);
(4) a = b, i.e. the transition would generate another a, and the pattern graph has an edge from a to

any symbol c labelled with pattern T (since a T c allows arbitrarily many copies of a prior to c) .

It is easy to see that this method correctly enforces our specificationAs: the generated words match
only patterns that occur in the pattern graph or are subsumed by such patterns.

As an example, consider the pattern graph built from the single word aaab. Because of pattern
merging, the graph will only have a single edge, from a to b and labelled (T, 1). Initially, we only
allow a transition on a since it is the only node labelled as a starting node. Next, situations (1), (2),
and (3) above do not hold (the last because we have not generated any symbol prior to the a), but
situation (4) does and allows another transition on a. Now by (3) and (4) we can transition on either
b or a respectively — suppose we choose the former (as we will discuss below, we actually pick
between transitions randomly if more than one is available). Since b is labelled as an ending node
in the graph, we can stop here with the improvisation aab.
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One remaining question is how to pick the transition to follow in the factor oracle when more
than one choice is consistent withAs. This is where we incorporate the probabilistic or “soft” spec-
ifications mentioned in Section 2. Building on a suggestion in [Donzé et al. 2014], we randomly
sample from the consistent transitions: a direct transition gets the replication probability p, and the
other transitions get probabilities related to their empirical probabilities in the dataset. Specifically,
the probability for a non-direct transition is computed as follows: we sum the counts in the pat-
tern graph for every edge that can allow the transition according to the rules above, and assign a
probability proportional to this sum.

To illustrate this computation, consider the pattern graph learned from the word aabcaabcaa, and
say we have generated aa so far. The pattern graph has an edge from a to b labelled (T, 2), and an
edge from a to a labelled (F, 1). According to the rules above, the first edge allows us to transition
on b (by (3)), and both edges allow us to transition on a (by (4) and (3) respectively). Adding up the
corresponding counts, we assign probabilities to b and a proportional to 2 and 2+1 = 3 respectively
(assuming neither transition is the direct transition in the factor oracle). Normalizing, we will pick
b with probability 2/5 and a with probability 3/5.

The goal of this heuristic is produce improvisations whose feature distribution is more similar to
that of the dataset than would be achieved with a purely random choice of transitions (see Section
7 for qualitative experiments assessing this). Many other heuristics are possible, and could give
better results in some circumstances. For example, under the simple heuristic above the pattern a T
b contributes equally to the probabilities of transitions on a and b, thereby prioritizing short ’Till
patterns. A more sophisticated heuristic could incorporate the number of repetitions of a inside each
instance of the pattern, adjusting the transition probabilities accordingly. We also note that random
transition heuristics of this kind can be thought of as attempts to enforce a type of divergence
criterion similar to the one used in the control improvisation problem, but where divergence is
measured against a dataset of multiple songs instead of a single reference word.

In summary, the overall process for generating an improvisation of length at least n is:
1. Maintain a sequence (q0, s0)(q1, s0) . . . (qk, sk) of pairs of states of Ap and As, and a word
wk = σ0σ1 . . . σk ∈ Σk.

2. If k ≥ n and sk is accepting, return wk.
3. If there are no outgoing transitions from sk, restart the improvisation process.
4. LetC be the set of transitions from qk that are compatible with sk (i.e. such that sk has a transition

on the same input symbol).
5. If C is empty, we need to add a transition to Ap. Pick a random transition from qk using the

distribution described above; let σ be the input symbol triggering it and set qk+1 to be its desti-
nation state. Among all input symbols for which there is a transition from sk, find the one, say
τ , most similar to σ (e.g. among pitches, the nearest in terms of intervals), and set sk+1 to be the
corresponding destination state. Add a transition from qk to qk+1 on input τ , and set σk+1 = τ .

6. Otherwise C is nonempty. Pick a random transition from C using the distribution described
above; set σk+1 to the input symbol triggering it and qk+1 to its destination state. Set sk+1 to the
destination state of the corresponding transition from sk.

7. Repeat from step 1.

6. MUSIC SPECIFICATION MINING
In this section we describe some features that can be used to describe expected musical behaviors or
properties and, therefore, are appropriate to mine specifications from. We start by formally defining
the components involved.

We abstract and formalize a song into a sequence of melodies, where a melody is defined as a
string of pitched notes and rests, aligned with an accompaniment, a sequence of chords with given
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durations7. The time unit is the beat, including respective integer subdivisions, and the piece is
divided into measures, which are sequences of k beats. We assume that the accompaniment is fixed
and our goal is to define an improviser for the melody. Hence, the plant will model the behavior of
the accompaniment, without constraining the melody, and the specification FSA will set constraints
on acceptable melodies played together with the accompaniment. To encode all events in a score,
we use an alphabet which is the product of four alphabets: Σ = Σp × Σd × Σc × Σb, where

• Σp is the pitches alphabet, i.e. Σp = { > , a0, a#0, b0, c0, · · · };
• Σd is the durations alphabet, i.e. Σd = {�, ♩, ˘ “, . . .} with ♩ = 1 beat. Note that Σd also includes

fractional durations, e.g., for triplets, as discussed below;
• Σc is the chords alphabet, i.e. Σc = {C, C7, G, Emaj, Adim, . . .};
• Σb is the beat alphabet. For example, if the smallest duration (excluding fractional durations) is

the eighth note, i.e. half a beat, then Σb = {0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5}, where 0 represents the
beginning of the first beat in the measure.
Note that the full alphabet enables the creation of data abstractions, such as melodic intervals

and tone classes. A similar strategy is used in [Conklin and Witten 1995], where data abstractions
(derived types) specific for chorales are implemented. In our current implementation, all pattern
graphs implicitly use the full alphabet Σ. However, each component alphabet is meant to address
one particular aspect of the music formalization, and we construct the specifications by composing
many small specifications which operate only on some of the component alphabets. For example,
a specification might constrain only the sequence of beats in the melody, without using the other
information in each event, and so could be represented as a small pattern graph defined only over
Σb.

6.1. Time Domain Features
— Event Duration: This feature describes the duration, given in beats, of silences and tones. The

event duration feature imposes hard constraints on duration diversity but provides only weak
guarantees on rhythmic complexity because it has no awareness of beat location. Figure 6 pro-
vides one example where specifications built on this feature fail to prevent incomplete tuplets. We
can impose further constraints on rhythmic complexity by combining the features event duration
and beat onset location.

Fig. 6: Selection of event duration specifications learned from the training set. The pattern 1/3 S 1
(1/3, 1, 1/3) is allowed but can produce incomplete tuplets if placed on certain beats.

— Beat onset location: This feature describes where events happen within the beat, ignoring infor-
mation about the length of the event. It is computed by taking the remainder modulo 1 of the beat
feature, which describes the onset locations of each event. Cooperatively, event duration and beat
onset location specifications impose hard constraints on rhythmic complexity that duration spec-
ifications alone do not guarantee, and allow for rhythmic diversity that beat onset location alone
does not guarantee. These specifications extend our work in [Donzé et al. 2014] by replacing

7This is not canonical, and dynamics are not considered in this work, although they could easily be treated as another feature.
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handmade specifications designed to ensure rhythmic tuplet completeness with mined specifica-
tions. Figure 7 shows an example of the patterns learned and respective patterns between beat
onset locations.

Fig. 7: Beat onset locations specifications learned from the training set.

6.2. Frequency Domain Features
— Scale Degree: The scale degree is the identification of a note disregarding its octave but regard-

ing its distance from a reference tonality. We represent scale degree numerically, e.g. in a C scale
C = 0, C# = 1, . . . B = 11. Songs usually impose soft constraints on the pitch space, defin-
ing the set of appropriate scale degrees and transitions thereof. The selection of specifications
mined from scale degree shown in Figure 8 conform with the general consent that blues songs
include the main key’s major scale with the “flat seven” (scale degree 10) and the blue note (scale
degree 3), excluding, for example flat ninths (scale degree 1) so common in jazz literature. In
Figure 8, notice that sharp fourths (scale degree 6) are used as approach tones to scale degree
5 and 6. Since scale degree can only provide overall harmonic constraints to each tone over the
scope of the entire song, we use another feature to provide harmonic constraints based on chord
progression, therefore increasing the temporal granularity of the harmonic specifications.

Fig. 8: Selection of scale degree specifications learned from the training set.

— Interval Classification: Expanding on [Donzé et al. 2014], we replace the hand-designed tone
classification specifications, here called interval classification, with mined specifications. Our
specifications include information about the size (diatonic or leap) and quality (consonant or
dissonant) of the music interval that precedes each tone. Figure 9 illustrates the mined spec-
ifications. We use the symbols A, B, C, and D, to describe tones reached by consonant step,
consonant leap, dissonant (non-chord tones) step, and dissonant leap respectively. Consonant
and dissonant notes preceded by rests are described with the symbols I and O respectively. The
symbol R represents rests. Although scale degree and interval classification specifications ensure
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desirable harmonic guarantees given key and chord context, they provide no guarantees over the
contour of a melody.

Fig. 9: Interval class specifications learned from the training set.

— Chord Degree: The chord degree is the identification of a note regarding its distance in semi-
tones to the root of a chord. It adds harmonic specificity to the interval class, without enforcing
a melodic contour.

— Melodic Interval: This feature operates on the first difference of pitch values and is associated
with the contour of a melody. Combined with scale degree and interval classification, it provides
harmonic and melodic constraints, including melodic contour.

chord dur measure phrase . . . pitch mel interval beat interval class
0 F7 14/3 1 1 . . . 69 NA 1 I
1 F7 1/3 2 1 . . . 65 -4 5/3 B
2 F7 2/3 2 1 . . . 67 2 1 C
3 F7 1/3 2 1 . . . 65 -2 5/3 A
4 F7 1 2 1 . . . 68 3 1 D
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
22 B-7 1 10 3 . . . 68 3 1 B
23 B-7 1 10 3 . . . 67 -1 1 C
24 F7 4 11 3 . . . 65 -2 1 A
25 F7 -4 12 3 . . . NA NA 1 R

Table I: Dataframe from Blues Stay Away From Me by Wayne Raney et al. NA represents a rest or
a transition to or from a rest. dur is duration in beats and mel interval is melodic interval

Table I provides the reader with a selection of features extracted from a blues song, including
chord and phrase number annotations. The next section analyzes in detail the application of specifi-
cation mining to the tasks of song validation and machine improvisation with formal specifications.

7. EXPERIMENTAL RESULTS
In all our experiments, we used the features above to mine specifications from a training set of 20
blues songs, Dtrain, digitized from the Real Book of Blues [Long 1999].
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7.1. Specification Validation
To check whether our learned specifications are overfitting the training set, we measured the ex-
tent to which a disjoint set of songs from the same genre satisfied the specifications. We divide
specification violations into two categories:

— the word has a pattern whose symbols exist in the alphabet but the pattern is not allowed by the
specification.

— the starting/ending node does not exist in the specification.

An example of the first type is playing an interval that is not valid, although both notes exist in
the scale; e.g. the augmented fourth is a forbidden interval in harmony or has to be appropriately
resolved. The second type ensures that phrases will start with the proper notes.

We quantify how a test song violates the specification by computing the violation ratio, which is
the fraction of patterns occurring in the song that are illegal. This quantity is computed by building
the pattern graphs for the test song and comparing them with the corresponding graphs learned from
the training set. Although the violation ratio is a quantitative measure of how badly the specifications
are violated, its formulation is not based on human cognition and perception. Ideally, we would like
a measure that takes into account how the violations perceptually differ from the behaviors in the
specification. We have developed a prototype of such measure, but leave its evaluation to future
work.

In our experiments, we used a separate test set Dtest consisting of 10 blues songs, digitized
from the Country Blues songbook [Grossman et al. 1973]. In total there were 975 patterns learned
from Dtest, of which 124 were violations. In particular, there were 51 chord degree violations, 47
melodic interval violations and 26 interval class violations, yielding a violation ratio of 0.12 for the
Dtest dataset with 10 songs. All songs in Dtest had starting and ending nodes that existed in the
specification.

Figure 10 provides histograms of violations obtained by using harmonic specifications based on
chord degree and interval to validate each song in the test set.

Given the small size of our training data for learning specifications, we assume that these viola-
tions would not occur on a larger training set. This validation can be exploited in style recognition
and we foresee that more complex validations are possible by creating more elaborated metrics and
using a combination of specifications from multiple styles.

Overall, there were many interval violations related to leaps. Although both training and test
sets had licks that used chord arpeggiations, their starting notes were different, leading to invalid
interval transitions. We provide a specific example in Figure 10 where the first three notes represent
an arpeggiation over E7 that starts with an invalid interval. In addition to interval violations, this
test set has chord degree violations that are mainly related to playing in sequence two notes that
do not belong to the current chord. After analysis, we learned that these invalid transitions occur in
blues songs where the second phrase is a repetition of the first phrase under a different harmony.
The blues song You Don’t Mean No Good in Figure 10 has a good example. In that song, the E7
arpeggio on the first phrase, measure 2, is valid under E7 but invalid on the second phrase, measure
6, under A7.

7.2. Machine Improvisation with hard and soft specifications
Using the 12-bar blues excerpt and its chord progression shown in Figure 12, we generated impro-
visations with and without specifications, generated from Dtrain, using the factor oracle with 75%
replication probability. For this task, we used joint specifications, including duration, beat onset
location, chord degree, interval class and melodic interval.

For the quantitative analysis, we computed the average melodic similarity between Dtrain and
other sets of improvisation, including: 50 factor oracle improvisations generated without specifica-
tions, 50 factor oracle improvisations generated with hard specifications and 50 factor oracle im-
provisations generated with soft and hard specifications. The melodic similarity is computed using
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Fig. 10: Histogram of melodic interval and chord degree violations. The y-axis represents the pat-
terns that do not exist in the specification and the x-axis represents their frequency. F and T represent
the patterns Followed and ’Till respectively.

the algorithm described in [Valle and Freed 2015]. As baselines, we also computed the similarity of
Dtrain to the 12 Bar Blues reference word and to 50 songs with random notes and durations.

The results in Figure 11 show that the specifications are successful in making the improvisation
generated by the factor oracle more similar to the melodies from which the specifications were
mined. In the case of the 12-bar blues, the pitch distribution and the melodic similarity of the im-
provisations generated with hard specs and hard and soft specs to the training data is almost equal.

Qualitatively, the improvisation without specifications violates several specifications related to
expected harmonic and melodic behavior, as Figure 12 confirms. For example, measure 4 in the
improvisation without specifications has chord degrees that violate harmonic specifications. This
is expected because the transitions taken by the unsupervised improvisation disregard harmonic
context, thus commonly producing unprepared and uncommon dissonant notes. In addition, the
melodic profile of the unsupervised improvisation is rather jumpy.

Both supervised improvisations are able to keep overall harmonic coherence despite the use of
chromaticism. Their melodic contour is rather smooth and the improvisations include several oc-
currences of the ’Til and Surrounding patterns, as measures 5 and 1 of the improvisation with hard
and with both hard and soft specifications respectively show. We noticed that the improvisations
generated with the specifications are considerably similar, which implies that there are not many so-
lutions to the constraints enforced by the specifications. This raises an interesting research question,
namely how to ensure that there is enough diversity among the improvisations while still satisfying
the constraints.

8. CONCLUSIONS
We proposed a solution to the problem of mining specifications from symbolic music for machine
improvisation with formal specifications. This solution replaced our previous approach, which re-
quired manually inferring and encoding specifications, with an engine that automatically mines in-
formation from a dataset of songs. Our experiments show that the new approach is successful both
in graphically and algorithmically describing characteristics of a music collection, and in guiding
improvisations in the style of that music collection.

This paper is a first step towards music specification mining and we plan to investigate mecha-
nisms to build more complex specifications, e.g. hierarchical specification schemes where the spec-
ification layers have hierarchical relationships such as section, phrase, motif, note.
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(a) Train dataset (20 blues songs) (b) Melodic Similarity w.r.t train dataset

(c) 50 improvisations
without specifications

(d) 50 improvisations
with hard specifications

(e) 50 improvisations
with hard and soft specifications

Fig. 11: Pitch Histograms for the training set and factor oracle improvisations with 0.75 replication
probability. The melodic similarity with respect to the training set bargraph (b) has values normal-
ized by the larger similarity value (Wref ).

With the purpose of extending specification mining to the audio domain, we are currently inves-
tigating the design of specifications based on audio features, such as Chroma and Mel-Frequency
Cepstral Coefficients, and the use of neural networks for control.
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