skip to main content
research-article

Two-Hop Relay-Assisted Cooperative Communication in Wireless Body Area Networks: An Empirical Study

Authors Info & Claims
Published:22 September 2016Publication History
Skip Abstract Section

Abstract

The pervasive use of wireless body area networks (BANs) has incurred potential inter-BAN interference, which can cause severe performance degradation. In this article, the coexistence of BANs is experimentally performed. A relay-assisted cooperative communications scheme is implemented in a real IEEE 802.15.4-based BAN system with a beacon-enabled mode and guaranteed time slot (GTS) scheduling. As far as we know, it is the first experimental work that enables real-time investigation of the effectiveness of cooperative communications in BANs for co-channel radio interference mitigation. First- and second-order statistics, including outage probability, level crossing rate (LCR), and average fade/nonfade duration, are calculated from the measured effective channel gains of the device-to-coordinator links across all superframes. Empirical results demonstrate significant advantages of using two-hop relay-assisted communications over traditional star topology BAN. Advantages include a maximum of a 10dB increase in channel gain threshold at an outage probability of 10%, which corresponds to a guideline for a 10% maximum packet error rate as specified in the IEEE BAN standard; a reduction in the level crossing rate by a factor of 5 at a channel gain threshold of − 100dB; and an average nonfade duration prolonged by a factor of 5 at the same threshold.

References

  1. R. G. Balaji, P. S. Raghavendran, and R. Ashokan. 2013. Performances enhancement in wireless body area network (WBAN). International Journal of Engineering and Innovative Technology (IJEIT) 3, 2 (2013), 12--15.Google ScholarGoogle Scholar
  2. A. Bletsas, A. Khisti, D. P. Reed, and A. Lippman. 2006. A simple cooperative diversity method based on network path selection. IEEE Journal on Selected Areas in Communications 24, 3 (March 2006), 659--672. DOI:http://dx.doi.org/10.1109/JSAC.2005.862417 Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. B. Cao, Y. Ge, C. W. Kim, G. Feng, H. P. Tan, and Y. Li. 2013. An experimental study for inter-user interference mitigation in wireless body sensor networks. IEEE Sensors Journal 13, 10 (Oct. 2013), 3585--3595. DOI:http://dx.doi.org/10.1109/JSEN.2013.2267053Google ScholarGoogle ScholarCross RefCross Ref
  4. V. Chaganti, L. Hanlen, and D. Smith. 2014. Are narrowband wireless on-body networks wide-sense stationary? IEEE Transactions on Wireless Communications 13, 5 (May 2014), 2432--2442. DOI:http://dx.doi.org/10.1109/TWC.2014.031914.130303Google ScholarGoogle Scholar
  5. S. L. Cotton, R. D’Errico, and C. Oestges. 2014. A review of radio channel models for body centric communications. Radio Science 49, 6 (2014), 371--388. DOI:http://dx.doi.org/10.1002/2013RS005319 2013RS005319Google ScholarGoogle ScholarCross RefCross Ref
  6. S. L. Cotton, A. McKernan, A. J. Ali, and W. G. Scanlon. 2011. An experimental study on the impact of human body shadowing in off-body communications channels at 2.45 GHz. In Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP’11). 3133--3137.Google ScholarGoogle Scholar
  7. Crossbow Technology. 2006. MICAz Datasheet. Crossbow Technology, San Jose, CA.Google ScholarGoogle Scholar
  8. B. de Silva, A. Natarajan, and M. Motani. 2009. Inter-user interference in body sensor networks: Preliminary investigation and an infrastructure-based solution. In 6th International Workshop on Wearable and Implantable Body Sensor Networks, 2009 (BSN’09). 35--40. DOI:http://dx.doi.org/10.1109/BSN.2009.36 Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. J. Dong and D. Smith. 2012. Cooperative body-area-communications: Enhancing coexistence without coordination between networks. In 2012 IEEE 23rd International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC’12). 2269--2274. DOI:http://dx.doi.org/10.1109/PIMRC.2012.6362733Google ScholarGoogle ScholarCross RefCross Ref
  10. J. Dong and D. Smith. 2013. Opportunistic relaying in wireless body area networks: Coexistence performance. In 2013 IEEE International Conference on Communications (ICC’13). 5613--5618. DOI:http://dx.doi.org/10.1109/ICC.2013.6655487Google ScholarGoogle ScholarCross RefCross Ref
  11. P. Ferrand, M. Maman, C. Goursaud, J. Gorce, and L. Ouvry. 2011. Performance evaluation of direct and cooperative transmissions in body area networks. Annals of Telecommunications - Annales Des tlcommunications 66, 3--4 (2011), 213--228. DOI:http://dx.doi.org/10.1007/s12243-011-0238-yGoogle ScholarGoogle Scholar
  12. IEEE 802.16 Working Group. 2009. IEEE standard for local and metropolitan area networks part 16: Air interface for broadband wireless access systems amendment 1: Multihop relay specification. IEEE Std. 802.16j-2009, (2009).Google ScholarGoogle Scholar
  13. IEEE Standards Association. 2012. 802.15. 6-2012 IEEE Standards for Local and Metropolitan Area Networks--Part 15.6: Wireless Body Area Networks. 6-2012.Google ScholarGoogle Scholar
  14. L. W. Hanlen, D. Miniutti, D. Rodda, and B. Gilbert. 2009. Interference in body area networks: Distance does not dominate. In 2009 IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications. 281--285. DOI:http://dx.doi.org/10.1109/PIMRC.2009.5450109Google ScholarGoogle ScholarCross RefCross Ref
  15. J. Hauer. 2009. TKN15.4: An IEEE 802.15.4 MAC Implentation for TinyOS. Technische Universitat Berlin, Berlin, Germany.Google ScholarGoogle Scholar
  16. J. Hauer, V. Handziski, and A. Wolisz. 2009. Experimental study of the impact of WLAN interference on IEEE 802.15.4 body area networks. In Proceedings of the 6th European Conference on Wireless Sensor Networks (EWSN’09). Springer-Verlag, Berlin, 17--32. DOI:http://dx.doi.org/10.1007/978-3-642-00224-3_2 Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. J. N. Laneman, D. N. C. Tse, and G. W. Wornell. 2004. Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory 50, 12 (Dec. 2004), 3062--3080. DOI:http://dx.doi.org/10.1109/TIT.2004.838089 Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. J. N. Laneman and G. W. Wornell. 2003. Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks. IEEE Transactions on Information Theory 49, 10 (Oct. 2003), 2415--2425. DOI:http://dx.doi.org/10.1109/TIT.2003.817829 Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. D. Lewis. 2008. IEEE 802.15.6 Call for Applications - Summary ID: 802.15-05-0407-05. IEEE submission. (July 2008).Google ScholarGoogle Scholar
  20. T. S. P. See, C. W. Kim, T. M. Chiam, Y. Ge, A. A. P. Wai, and Z. N. Chen. 2012. Study of dynamic on-body link reliability for WBAN systems. In 2012 IEEE Asia-Pacific Conference on Antennas and Propagation (APCAP’12). 112--113. DOI:http://dx.doi.org/10.1109/APCAP.2012.6333173Google ScholarGoogle Scholar
  21. A. Sendonaris, E. Erkip, and B. Aazhang. 2003. User cooperation diversity. Part I. System description. IEEE Transactions on Communications 51, 11 (Nov. 2003), 1927--1938. DOI:http://dx.doi.org/10.1109/TCOMM.2003.818096Google ScholarGoogle ScholarCross RefCross Ref
  22. S. Simoens, O. Muoz-Medina, J. Vidal, and A. Del Coso. 2010. Compress-and-forward cooperative MIMO relaying with full channel state information. IEEE Transactions on Signal Processing 58, 2 (Feb. 2010), 781--791. DOI:http://dx.doi.org/10.1109/TSP.2009.2030622 Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. D. B. Smith. 2014. Improved switched combining with cooperative diversity for wireless body area networks: Empirical analysis and theory. In 2014 IEEE International Conference on Communications (ICC’14). 5682--5687. DOI:http://dx.doi.org/10.1109/ICC.2014.6884227Google ScholarGoogle ScholarCross RefCross Ref
  24. D. B. Smith and L. W. Hanlen. 2015. Channel modeling for wireless body area networks. In Ultra-Low-Power Short-Range Radios. Springer International Publishing, 25--55. DOI:http://dx.doi.org/10.1007/978-3-319-14714-7Google ScholarGoogle Scholar
  25. D. B. Smith and L. W. Hanlen. 2015. Channel modeling for wireless body area networks. In Ultra-Low Power Short-Range Radios. Springer. 25--55.Google ScholarGoogle Scholar
  26. D. B. Smith, L. W. Hanlen, D. Miniutti, J. Zhang, D. Rodda, and B. Gilbert. 2008. Statistical characterization of the dynamic narrowband body area channel. In 1st International Symposium on Applied Sciences on Biomedical and Communication Technologies, 2008 (ISABEL’08). 1--5. DOI:http://dx.doi.org/10.1109/ISABEL.2008.4712618Google ScholarGoogle Scholar
  27. D. B. Smith, L. W. Hanlen, D. Rodda, B. Gilbert, J. Dong, and V. Chaganti. 2012. Body Area Network Radio Channel Measurement Set. (2012). http://opennicta.com/datasets.Google ScholarGoogle Scholar
  28. K. Srinivasan, P. Dutta, A. Tavakoli, and P. Levis. 2006. Understanding the causes of packet delivery success and failure in dense wireless sensor networks. In Proceedings of the 4th International Conference on Embedded Networked Sensor Systems (SenSys’06). ACM, New York, NY, 419--420. DOI:http://dx.doi.org/10.1145/1182807.1182885 Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. W. Sun, Y. Ge, and W. C. Wong. 2012. Inter-user interference in body sensor networks: A case study in moderate-scale deployment in hospital environment. In 2012 IEEE 14th International Conference on e-Health Networking, Applications and Services (Healthcom’12). IEEE, 447--450.Google ScholarGoogle Scholar
  30. S. Xiao, A. Dhamdhere, V. Sivaraman, and A. Burdett. 2009. Transmission power control in body area sensor networks for healthcare monitoring. IEEE Journal on Selected Areas in Communications 27, 1 (Jan. 2009), 37--48. DOI:http://dx.doi.org/10.1109/JSAC.2009.090105 Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Two-Hop Relay-Assisted Cooperative Communication in Wireless Body Area Networks: An Empirical Study

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in

            Full Access

            • Published in

              cover image ACM Transactions on Sensor Networks
              ACM Transactions on Sensor Networks  Volume 12, Issue 4
              November 2016
              309 pages
              ISSN:1550-4859
              EISSN:1550-4867
              DOI:10.1145/2994619
              • Editor:
              • Chenyang Lu
              Issue’s Table of Contents

              Copyright © 2016 ACM

              Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

              Publisher

              Association for Computing Machinery

              New York, NY, United States

              Publication History

              • Published: 22 September 2016
              • Accepted: 1 July 2016
              • Revised: 1 May 2016
              • Received: 1 May 2015
              Published in tosn Volume 12, Issue 4

              Permissions

              Request permissions about this article.

              Request Permissions

              Check for updates

              Qualifiers

              • research-article
              • Research
              • Refereed

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader